Периметр прямоугольно треугольника относится к его площади как 2:3. Стороны треугольника выражены целыми числами. Найти наибольший возможный периметр треугольника.
P=a+b+√(a^2+b^2)P/S=(a+b+√(a^2+b^2))/(ab/2)=2/32ab=6(a+b+√(a^2+b^2))
дальше надо бы одну переменную выразить через другую
и искать производную функции-но там тяжело...
может другой способ есть...
.......................
Прошу прощения за качество, постараюсь исправить.
А как из строчки 3а+3б+3(корень) получилось 9а^2+9б^2..?
Аааа, возведение в квадрат
(6b-18)/(b-6) = 6 + 18/(b-6) как?
Выделение в числителе 6(b-6)+18