Вычислите угол между биссектрисой и медианой, проведенными из прямого угла прямоугольного...

0 голосов
56 просмотров

Вычислите угол между биссектрисой и медианой, проведенными из прямого угла прямоугольного треугольника площадью 9√3 / 2 и гипотенузой 6.


Математика | 56 просмотров
Дано ответов: 2
0 голосов
Правильный ответ

решение на фото внизу

(271k баллов)
0 голосов

медиана делит треугольник на два равновеликих треугольника

(площади у них равны)

также известно: медиана к гипотенузе равна половине гипотенузы...

т.е. мы получим два равнобедренных треугольника с равными сторонами по 6/2 = 3 и площади этих треугольников равны по 9√3/4;

один треугольник тупоугольный с двумя равными углами по (45°-х),

другой остроугольный с двумя равными углами по (45°+х),

где х --угол между медианой и биссектрисой...

для любого из этих двух треугольников можно записать его площадь:

9√3/4 = 0.5*3*3*sin(90°+2x) или 9√3/4 = 0.5*3*3*sin(90°-2x)

√3/2 = cos(2x)

2x = 30°

х = 15°

(236k баллов)