(60)решите уравнение........

0 голосов
30 просмотров

(60)решите уравнение........


image

Алгебра (51 баллов) | 30 просмотров
Дано ответов: 2
0 голосов
Правильный ответ

Для уравнений вида

ax^4+bx^3+cx^2+bx+a=0

есть следующий метод решения:


x^4-5x^3+6x^2-5x+1=0

Разделим все уравнение на x². Для этого сначала убедимся, что x=0 не является корнем уравнения.

0^4-5\cdot0^3+6\cdot0^2-5\cdot0+1=1\neq 0


Получим уравнение

x^2-5x+6-\dfrac{5}{x}+\dfrac{1}{x^2}=0\\ x^2+\dfrac{1}{x}-5(x+\dfrac{1}{x})+6=0


Так как

(x+\dfrac{1}{x})^2=x^2+\dfrac{1}{x^2}+2

то можно произвести замену

x+\dfrac{1}{x}=t; \ \ \ x^2+\dfrac{1}{x^2}=t^2-2


Получим уравнение

t^2-2-5t+6=0\\ t^2-5t+4=0\\ D=25-16=9=3^2\\ t_1=\dfrac{5-3}{2}=1\\ t_2=\dfrac{5+3}{2}=4


Производим обратную замену

1)\\ x+\dfrac{1}{x}=1\\ x^2-x+1=0\\ D=1-4<0\\ \\ 2)\\ x+\dfrac{1}{x}=4\\ x^2-4x+1=0\\ \frac{D}{4}=4-1=3\\ x=2 \pm \sqrt{3}


(2- \sqrt{3})(2+ \sqrt{3})=4-3=1


Ответ: 1


(80.5k баллов)
0 голосов

x^{4}-5x^{3}+6x^{2}-5x+1=0\\\\((x-4)x+1)((x-1)x+1)=0 \\\\(x^{2} -4x+1)(x^{2} -x+1)=0\\\\1)x^{2} -4x+1=0\\\\D=(-4)^{2} -4*1*1=12=(2\sqrt{3})^{2}\\\\x_{1}=\frac{4+2\sqrt{3}}{2} =2+\sqrt{3}\\\\x_{2}=\frac{4-2\sqrt{3}}{2}=2-\sqrt{3}


2)x^{2} -x+1=0\\\\D=(-1)^{2} -4*1*1=-3\\\\D<0


решений нет


x_{1}*x_{2}=(2+\sqrt{3})(2-\sqrt{3})=2^{2} -(\sqrt{3})^{2}=4-3=1

(220k баллов)
0

по какому правилу было произведено разложение на множители во второй строке?