0 \\ 4x+16 > 0 \\ 4x + 16 \ne 1 \end{gathered} \right.$ \ ; \ $\left\{ \begin{gathered} x > -4 \\ x \ne -\dfrac{15}{4} \\ \end{gathered} \right.$ \ ; \ x \in (-4;-\dfrac{15}{4})\cup ( -\dfrac{15}{4}; +\infty) " alt=" \log_{2}(x+4) \ge \log_{(4x+16)}8 \\ \\ ODZ: \ $\left\{ \begin{gathered} x + 4 > 0 \\ 4x+16 > 0 \\ 4x + 16 \ne 1 \end{gathered} \right.$ \ ; \ $\left\{ \begin{gathered} x > -4 \\ x \ne -\dfrac{15}{4} \\ \end{gathered} \right.$ \ ; \ x \in (-4;-\dfrac{15}{4})\cup ( -\dfrac{15}{4}; +\infty) " align="absmiddle" class="latex-formula">
С учётом ОДЗ (2):
Ответ: x ∈ [-31/8; -15/4)∪ [-2; +∞)