![x^2+kx+6=0 x^2+kx+6=0](https://tex.z-dn.net/?f=+x%5E2%2Bkx%2B6%3D0+)
Начнем с того, что данное квадратное уравнение по условию должно иметь 2 решения, значит
![D=k^2-24\geq 0 \ \Rightarrow \ (k-2\sqrt6)(k+2\sqrt6)\geq 0 \ \Rightarrow \ k \in (\infty; \ -2\sqrt6] \cup [2\sqrt6; \ + \infty) D=k^2-24\geq 0 \ \Rightarrow \ (k-2\sqrt6)(k+2\sqrt6)\geq 0 \ \Rightarrow \ k \in (\infty; \ -2\sqrt6] \cup [2\sqrt6; \ + \infty)](https://tex.z-dn.net/?f=+D%3Dk%5E2-24%5Cgeq+0+%5C+%5CRightarrow+%5C+%28k-2%5Csqrt6%29%28k%2B2%5Csqrt6%29%5Cgeq+0+%5C+%5CRightarrow+%5C+k+%5Cin+%28%5Cinfty%3B+%5C+-2%5Csqrt6%5D+%5Ccup+%5B2%5Csqrt6%3B+%5C+%2B+%5Cinfty%29++)
По теореме Виета имеем
![x_1x_2=6 x_1x_2=6](https://tex.z-dn.net/?f=+x_1x_2%3D6+)
тогда можно составить систему уравнений
![\left\{\begin{array}{I} x_1x_2=6 \\ |x_1-x_2|=1 \end{array}} \left\{\begin{array}{I} x_1x_2=6 \\ |x_1-x_2|=1 \end{array}}](https://tex.z-dn.net/?f=+%5Cleft%5C%7B%5Cbegin%7Barray%7D%7BI%7D+x_1x_2%3D6++%5C%5C+%7Cx_1-x_2%7C%3D1+%5Cend%7Barray%7D%7D+)
которую можно записать как совокупность двух систем
![\left[\begin{array}{I} \left\{\begin{array}{I} x_1x_2=6 \\ x_1-x_2=1 \end{array}} \\ \left\{\begin{array}{I} x_1x_2=6 \\ x_1-x_2=-1 \end{array}} \end{array}} \left[\begin{array}{I} \left\{\begin{array}{I} x_1x_2=6 \\ x_1-x_2=1 \end{array}} \\ \left\{\begin{array}{I} x_1x_2=6 \\ x_1-x_2=-1 \end{array}} \end{array}}](https://tex.z-dn.net/?f=+%5Cleft%5B%5Cbegin%7Barray%7D%7BI%7D+%5Cleft%5C%7B%5Cbegin%7Barray%7D%7BI%7D+x_1x_2%3D6++%5C%5C+x_1-x_2%3D1+%5Cend%7Barray%7D%7D++%5C%5C+%5Cleft%5C%7B%5Cbegin%7Barray%7D%7BI%7D+x_1x_2%3D6++%5C%5C+x_1-x_2%3D-1+%5Cend%7Barray%7D%7D+%5Cend%7Barray%7D%7D+)
решаем каждую
![1) \\ \left\{\begin{array}{I} x_1x_2=6 \\ x_1-x_2=1 \end {array}} \ \Rightarrow \ \left\{\begin{array}{I} x_2(x_2+1)=6 \\ x_1=1+x_2 \end{array}} 1) \\ \left\{\begin{array}{I} x_1x_2=6 \\ x_1-x_2=1 \end {array}} \ \Rightarrow \ \left\{\begin{array}{I} x_2(x_2+1)=6 \\ x_1=1+x_2 \end{array}}](https://tex.z-dn.net/?f=+1%29+%5C%5C+%5Cleft%5C%7B%5Cbegin%7Barray%7D%7BI%7D+x_1x_2%3D6++%5C%5C+x_1-x_2%3D1+%5Cend+%7Barray%7D%7D+%5C+%5CRightarrow+%5C+%5Cleft%5C%7B%5Cbegin%7Barray%7D%7BI%7D+x_2%28x_2%2B1%29%3D6++%5C%5C+x_1%3D1%2Bx_2+%5Cend%7Barray%7D%7D+)
![(1+x_2)x_2=6\\ x_2^2+x_2-6=0\\ D=1+24=25=5^2\\ x_2=\dfrac{-1 \pm 5}{2}=\left[\begin{array}{I} 2 \\ -3 \end{array}} \ \Rightarrow \ x_1=\left[\begin{array}{I} 1+2=3 \\ 1-3=-2 \end{array}} (1+x_2)x_2=6\\ x_2^2+x_2-6=0\\ D=1+24=25=5^2\\ x_2=\dfrac{-1 \pm 5}{2}=\left[\begin{array}{I} 2 \\ -3 \end{array}} \ \Rightarrow \ x_1=\left[\begin{array}{I} 1+2=3 \\ 1-3=-2 \end{array}}](https://tex.z-dn.net/?f=+%281%2Bx_2%29x_2%3D6%5C%5C+x_2%5E2%2Bx_2-6%3D0%5C%5C+D%3D1%2B24%3D25%3D5%5E2%5C%5C+x_2%3D%5Cdfrac%7B-1+%5Cpm+5%7D%7B2%7D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7BI%7D+2++%5C%5C+-3+%5Cend%7Barray%7D%7D+%5C+%5CRightarrow+%5C+x_1%3D%5Cleft%5B%5Cbegin%7Barray%7D%7BI%7D+1%2B2%3D3++%5C%5C+1-3%3D-2+%5Cend%7Barray%7D%7D+++)
![2)\\ \left\{\begin{array}{I} x_1x_2=6 \\ x_1-x_2=-1 \end{array}} \ \Rightarrow \ \left\{\begin{array}{I} x_2(x_2-1)=6 \\ x_1=x_2-1 \end{array}} 2)\\ \left\{\begin{array}{I} x_1x_2=6 \\ x_1-x_2=-1 \end{array}} \ \Rightarrow \ \left\{\begin{array}{I} x_2(x_2-1)=6 \\ x_1=x_2-1 \end{array}}](https://tex.z-dn.net/?f=2%29%5C%5C+%5Cleft%5C%7B%5Cbegin%7Barray%7D%7BI%7D+x_1x_2%3D6++%5C%5C+x_1-x_2%3D-1+%5Cend%7Barray%7D%7D+%5C+%5CRightarrow+%5C+%5Cleft%5C%7B%5Cbegin%7Barray%7D%7BI%7D+x_2%28x_2-1%29%3D6++%5C%5C+x_1%3Dx_2-1+%5Cend%7Barray%7D%7D+)
![x_2(x_2-1)=6\\ x_2^2-x_2-6=0\\ D=1+24=25=5^2\\ x_2=\dfrac{1 \pm 5}{2}=\left[\begin{array}{I} 3 \\ -2 \end{array} } \ \Rightarrow \ x_1=\left[\begin{array}{I} 3-1=2 \\ -2-1=-3 \end{array}} x_2(x_2-1)=6\\ x_2^2-x_2-6=0\\ D=1+24=25=5^2\\ x_2=\dfrac{1 \pm 5}{2}=\left[\begin{array}{I} 3 \\ -2 \end{array} } \ \Rightarrow \ x_1=\left[\begin{array}{I} 3-1=2 \\ -2-1=-3 \end{array}}](https://tex.z-dn.net/?f=+x_2%28x_2-1%29%3D6%5C%5C+x_2%5E2-x_2-6%3D0%5C%5C+D%3D1%2B24%3D25%3D5%5E2%5C%5C+x_2%3D%5Cdfrac%7B1+%5Cpm+5%7D%7B2%7D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7BI%7D+3++%5C%5C+-2+%5Cend%7Barray%7D+%7D+%5C+%5CRightarrow+%5C+x_1%3D%5Cleft%5B%5Cbegin%7Barray%7D%7BI%7D+3-1%3D2++%5C%5C+-2-1%3D-3+%5Cend%7Barray%7D%7D)
По теореме Виета
![x_1+x_2=-k x_1+x_2=-k](https://tex.z-dn.net/?f=+x_1%2Bx_2%3D-k+)
отсюда
![k_1=-(3+2)=-5 \\ k_2=-(-2-3)=5\\ k_3=-(2+3)=-5\\ k_4=-(-3-2)=5 k_1=-(3+2)=-5 \\ k_2=-(-2-3)=5\\ k_3=-(2+3)=-5\\ k_4=-(-3-2)=5](https://tex.z-dn.net/?f=+k_1%3D-%283%2B2%29%3D-5+%5C%5C+k_2%3D-%28-2-3%29%3D5%5C%5C+k_3%3D-%282%2B3%29%3D-5%5C%5C+k_4%3D-%28-3-2%29%3D5+)
Ответ: k=±5