3^(1/2 + ㏒₃ cos πx/3) + 6^(1/2) = 9^(1/2 + ㏒₉ sin πx/3)
√3·cos πx/3 + √6 = 3·sin πx/3
cos πx/3 > 0
sin πx/3 > 0
3·sin πx/3 - √3·cos πx/3 = √6
-π/2 + 2πn < πx/3 < π/2 + 2πn, n ∈ Z
2πk < πx/3 < π + 2πk, k ∈ Z
√3/2 · sin πx/3 - 1/2 · cos πx/3 = √2/2
-1/2 + 2n < x/3 < 1/2 + 2n, n ∈ Z
2k < x/3 < 1 + 2k, k ∈ Z
sin πx/3 · cos π/6 - cos πx/3 · sin π/6 = √2/2
-3/2 + 6n < x < 3/2 + 6n, n ∈ Z
6k < x < 3 + 6k, k ∈ Z
sin(πx/3 - π/6) = √2/2
6k < x < 3/2 + 6k, k ∈ Z
πx/3 - π/6 = (-1)ⁿ·π/4 + πn, n ∈ Z
6k < x < 3/2 + 6k, k ∈ Z
x/3 - 1/6 = (-1)ⁿ·1/4 + n, n ∈ Z
6k < x < 3/2 + 6k, k ∈ Z
x = (-1)ⁿ·3/4 + 1/2 + 3n, n ∈ Z
6k < x < 3/2 + 6k, k ∈ Z
x = 3/4 + 1/2 + 6n, n ∈ Z
x = 5/4 + 6n, n ∈ Z