log_{0,5}(6x) " alt=" log_{0,5}(7x-21) > log_{0,5}(6x) " align="absmiddle" class="latex-formula">
0 " alt=" log_{0,5}(7x-21) - log_{0,5}(6x) > 0 " align="absmiddle" class="latex-formula">
0 " alt=" log_{0,5}(\frac{7x-21}{6x}) > 0 " align="absmiddle" class="latex-formula">
log_{0,5}(1) " alt=" log_{0,5}(\frac{7x-21}{6x}) > log_{0,5}(1) " align="absmiddle" class="latex-formula">
![\frac{7x-21}{6x} < 1 \frac{7x-21}{6x} < 1](https://tex.z-dn.net/?f=+%5Cfrac%7B7x-21%7D%7B6x%7D+%3C+1+)
Знак поменялся, т.к. в основании дробь.
![\frac{7x-21}{6x} - 1 < 0 \frac{7x-21}{6x} - 1 < 0](https://tex.z-dn.net/?f=+%5Cfrac%7B7x-21%7D%7B6x%7D+-+1+%3C+0+)
![\frac{7x-21-6x}{6x} < 0 \frac{7x-21-6x}{6x} < 0](https://tex.z-dn.net/?f=+%5Cfrac%7B7x-21-6x%7D%7B6x%7D+%3C+0++)
![\frac{x-21}{6x} < 0 \frac{x-21}{6x} < 0](https://tex.z-dn.net/?f=+%5Cfrac%7Bx-21%7D%7B6x%7D+%3C+0+)
Методом интервалов расставляем точки 21 и 0.
Ответом будет x∈(0;21).