Решить уравнение: sin^4x +cos^4x=sin x *cos x. В ответе указать(в градусах) корень **...

0 голосов
30 просмотров

Решить уравнение: sin^4x +cos^4x=sin x *cos x. В ответе указать(в градусах) корень на промежутке [0;180]


Алгебра (30 баллов) | 30 просмотров
Дано ответов: 2
0 голосов
Правильный ответ

Решите задачу:

sin^4x+cos^4x=sinx\cdot cosx\\\\(sin^4x+cos^4x+2sin^2x\cdot cos^2x)-2sin^2x\cdot cos^2x=sinx\cdot cosx\\\\(sin^2x+\cos^2x)^2-2sin^2x\cdot cos^2x=sinx\cdot cosx\\\\1-2sin^2x\cdot cos^2x=sinx\cdot cosx\\\\2(sinx\cdot cosx)^2+(sinx\cdot cosx)-1=0\\\\t=sinx\cdot cosx\; ,\; \; 2t^2+t-1=0\; ,\; \; D=9\; ,\\\\t_1=\frac{-1-3}4}=-1\; ,\; \; t_2=\frac{-1+3}{4}=\frac{1}{2}\\\\a)\; \; sinx\cdot cosx=-1\; \; \to \; \; \frac{1}{2}sin2x=-1\; ,\; \; sin2x=-2<-1\\\\x\in \varnothing \\\\b)\; \; sinx\cdot cosx=\frac{1}{2}\; ,\; \to \; \; \frac{1}{2}sin2x=\frac{1}{2}\; ,\; \; sin2x=1\\\\2x=\frac{\pi}{2}+2\pi n\; ,\; n\in Z\\\\\underline {x=\frac{\pi }{4}+\pi n\; ,\; n\in Z}


c)\; \; x\in [\, 0^\circ ,180^\circ ]:\; \; \underline {x=45^\circ }

(834k баллов)
0 голосов

sin∧4x + cos^4x + 2sin^2xcos^2x = sinxcosx + 2sin^2xcos^2x;

(sin∧2x + cos^2x)^2 = sinxcosx + 2sin^2xcos^2x;

1 = sinxcosx + 2sin^2xcos^2x; 2sin^2xcos^2x + sinxcosx - 1 = 0;

4sin^2xcos^2x + 2sinxcosx - 2 = 0; sin^2(2x) + sin(2x) - 2 = 0 - квадратное уравнение относительно sin(2x). По т. обратной к т. Виетта, имеем:

sin(2x) = -2 - не имеет решений

sin(2x) = 1; 2х = 90° + 360°n, n∈Z; x = 45° + 180°n, n∈Z. Промежутку [0;180] принадлежит только x = 45°. Ответ: x = 45°.

(8.8k баллов)