Расписать решение 1.Решить уравнение(выбрать корни) 2.Решить неравенство

0 голосов
27 просмотров

Расписать решение
1.Решить уравнение(выбрать корни)
2.Решить неравенство


image

Алгебра (94 баллов) | 27 просмотров
Дан 1 ответ
0 голосов

1) \ a) \ 3\mathrm{tg}x - 2\mathrm{ctg}x - 1= 0 \\ \\ 3\dfrac{\sin x}{\cos x} - 2\dfrac{\cos x}{\sin x} - 1= 0 \ / * \mathrm{tg}x \ne 0 \\ \\ 3\mathrm{tg^{2}}x - 2 - \mathrm{tg}x = 0 \\ \\ \mathrm{tg}x = t \\ \\ 3t^{2} - t - 2 = 0 \\ D = 1 + 24 = 25 \\ \\ t_{1} = \dfrac{1+5}{6} = 1 \ ; \ t_{2} = -\dfrac{2}{3} \\ \\ $\left[ \begin{gathered} \mathrm{tg}x = 1 \\ \mathrm{tg}x = -\dfrac{2}{3} \\ \end{gathered} \right.$


$\left[ \begin{gathered} x = \dfrac{\pi}{4} + \pi n, n \in Z \\ x = -\mathrm{arctg}\dfrac{2}{3} + \pi k, k \in Z \end{gathered} \right.$


b) \ \pi + \dfrac{\pi}{4} = \dfrac{5\pi}{4}


Ответ: a) π/4 + πn, n ∈ Z, arctg(-2/3) + \pi k, k \in Z

b) 5π/4, arctg(-2/3) + π/2, arctg(-2/3) + 3π/2


image 1 \\ \\ ODZ: \ $\left\{ \begin{gathered} x > 0 \\ 1-9\log_{8}^{2}x \ge 0 \ (1) \\ \end{gathered} \right.$ \ " alt=" 2) \ \sqrt{1-9\log ^{2}_{8}x} - 4\log_{8}x > 1 \\ \\ ODZ: \ $\left\{ \begin{gathered} x > 0 \\ 1-9\log_{8}^{2}x \ge 0 \ (1) \\ \end{gathered} \right.$ \ " align="absmiddle" class="latex-formula">


(1): \ 1 - 9\log_{8}^{2}x \ge 0 \\ \\ 9\log_{8}^{2}x \le 1 \\ \\ \log_{8}^{2}x \le \dfrac{1}{9} \\ \\ |\log_{8}x| \le \dfrac{1}{3} \\ \\ -\dfrac{1}{3} \le \log_{8}x \le \dfrac{1}{3} \\ \\ \log_{8}8^{-\frac{1}{3}} \le \log_{8}x \le \log_{8}8^{\frac{1}{3}} \\ \\ 8^{-\frac{1}{3}} \le x \le 8^{\frac{1}{3}} \\ \\ \dfrac{1}{2} \le x \le 2 \ ; \ x \in [\dfrac{1}{2};2]


x \in [\dfrac{1}{2} ;2]


Решим уравнение:

image 1 + 4\log_{8}x \\ \\ \sqrt{1-9\log_{2^{3}}^{2}x} > 1 + 4\log_{2^{3}}x \\ \\ \sqrt{1 -\log_{2}^{2}x} > 1 + \dfrac{4}{3}\log_{2}x \\ \\ (\sqrt{1 -\log_{2}^{2}x})^{2} > (1 + \dfrac{4}{3}\log_{2}x)^{2} " alt=" \sqrt{1-9\log ^{2}_{8}x} > 1 + 4\log_{8}x \\ \\ \sqrt{1-9\log_{2^{3}}^{2}x} > 1 + 4\log_{2^{3}}x \\ \\ \sqrt{1 -\log_{2}^{2}x} > 1 + \dfrac{4}{3}\log_{2}x \\ \\ (\sqrt{1 -\log_{2}^{2}x})^{2} > (1 + \dfrac{4}{3}\log_{2}x)^{2} " align="absmiddle" class="latex-formula">

$\left\{ 
\begin{gathered} 
1 - \log_{2}^{2}x \ \textgreater \ 1 + \dfrac{8}{3}\log_{2}x + \dfrac{16}{9}\log_{2}^{2}x \ (2) \\ 
1 + \dfrac{4}{3}\log_{2}x \ge 0 \ (3)\\ 
\end{gathered}
ИЛИ
$\left\{ 
 \begin{gathered} 
 1 - \log_{2}^{2}x \ \textgreater \ -(1 + \dfrac{8}{3}\log_{2}x + \dfrac{16}{9}\log_{2}^{2}x) \ (3) \\ 
 1 + \dfrac{4}{3}\log_{2}x \ \textless \ 0 \ (4) \\ 
 \end{gathered} 
\right.$ 

image 1 + \dfrac{8}{3}\log_{2}x + \dfrac{16}{9}\log_{2}^{2}x \\ \\ \log_{2}x = t \\ \\ 1 - t^{2} > 1 + \dfrac{8t}{3} + \dfrac{16t^{2}}{9} \\ \\ 9 - 9t^{2} > 9 + 24t + 16t^{2} \\ \\ -25t^{2} - 24t > 0 \\ \\ -t(25t + 24) > 0\\ $\left\{ \begin{gathered} t \ \textless \ 0 \\ t \ \textgreater \ -\dfrac{24}{25} \\ \end{gathered} \right.$" alt=" (2): \ 1 - \log_{2}^{2}x > 1 + \dfrac{8}{3}\log_{2}x + \dfrac{16}{9}\log_{2}^{2}x \\ \\ \log_{2}x = t \\ \\ 1 - t^{2} > 1 + \dfrac{8t}{3} + \dfrac{16t^{2}}{9} \\ \\ 9 - 9t^{2} > 9 + 24t + 16t^{2} \\ \\ -25t^{2} - 24t > 0 \\ \\ -t(25t + 24) > 0\\ $\left\{ \begin{gathered} t \ \textless \ 0 \\ t \ \textgreater \ -\dfrac{24}{25} \\ \end{gathered} \right.$" align="absmiddle" class="latex-formula">

t \in (-\dfrac{24}{25}; 0)

-\dfrac{24}{25} < \log_{2}x < 0 \\ \\ \log_{2}2^{-\frac{24}{25}} < \log_{2}x < \log_{2}2^{0} \\ \\ 2^{-\frac{24}{25}}< x < 1 \ ; \ x \in (\dfrac{1}{\sqrt[25]{2^{24}}}; 1)


(3): \ 1 + \dfrac{4}{3}\log_{2}x \ge 0 \\ \\ \log_{2}x \ge \log_{2}2^{-\frac{3}{4}} \\ \\ x \ge 2^{-\frac{3}{4}} \ ; \ x \in [\dfrac{1}{\sqrt[4]{2^{3}}}; +\infty)


Пересечём (2) и (3):

x \in [\dfrac{1}{\sqrt[4]{2^{3}}};1)


<img src="https://tex.z-dn.net/?f=%283%29%3A+%5C+x+%5Cin+R+%5C%5C+%5C%5C+%284%29%3A+%5C+1+%2B++%5Cdfrac%7B4%7D%7B3%7D%5Clog_%7B2%7Dx+%5C+%5Ctextless+%5C++0+%5C%5C+%5C%5C+%5Clog_%7B2%7Dx+%5C+%5Ctextless+%5C++-+%5Cdfrac%7B3%7D%7B4%7D+%5C%5C+%5C%5C+x+%5C+%5Ctextless+%5C+++%5Cdfrac%7B1%7D%7B+%5Csqrt%5B4%5D%7B2%5E%7B3%7D%7D%7D+" id="TexFormula15" title="(3): \ x \in R \\ \\ (4): \ 1 + \dfrac{4}{3}\log_{2}x \ \textless \ 0 \\ \\ \log_{2}x \ \textless \ - \dfrac{3}{4} \\ \\ x \ \textless \ \dfrac{1}{ \sqrt[4]{2^{3}}} " alt="(
(8.9k баллов)