Ответ: a) π/4 + πn, n ∈ Z, arctg(-2/3) + \pi k, k \in Z
b) 5π/4, arctg(-2/3) + π/2, arctg(-2/3) + 3π/2
1 \\ \\ ODZ: \ $\left\{ \begin{gathered} x > 0 \\ 1-9\log_{8}^{2}x \ge 0 \ (1) \\ \end{gathered} \right.$ \ " alt=" 2) \ \sqrt{1-9\log ^{2}_{8}x} - 4\log_{8}x > 1 \\ \\ ODZ: \ $\left\{ \begin{gathered} x > 0 \\ 1-9\log_{8}^{2}x \ge 0 \ (1) \\ \end{gathered} \right.$ \ " align="absmiddle" class="latex-formula">
Решим уравнение:
1 + 4\log_{8}x \\ \\ \sqrt{1-9\log_{2^{3}}^{2}x} > 1 + 4\log_{2^{3}}x \\ \\ \sqrt{1 -\log_{2}^{2}x} > 1 + \dfrac{4}{3}\log_{2}x \\ \\ (\sqrt{1 -\log_{2}^{2}x})^{2} > (1 + \dfrac{4}{3}\log_{2}x)^{2} " alt=" \sqrt{1-9\log ^{2}_{8}x} > 1 + 4\log_{8}x \\ \\ \sqrt{1-9\log_{2^{3}}^{2}x} > 1 + 4\log_{2^{3}}x \\ \\ \sqrt{1 -\log_{2}^{2}x} > 1 + \dfrac{4}{3}\log_{2}x \\ \\ (\sqrt{1 -\log_{2}^{2}x})^{2} > (1 + \dfrac{4}{3}\log_{2}x)^{2} " align="absmiddle" class="latex-formula">
ИЛИ
1 + \dfrac{8}{3}\log_{2}x + \dfrac{16}{9}\log_{2}^{2}x \\ \\ \log_{2}x = t \\ \\ 1 - t^{2} > 1 + \dfrac{8t}{3} + \dfrac{16t^{2}}{9} \\ \\ 9 - 9t^{2} > 9 + 24t + 16t^{2} \\ \\ -25t^{2} - 24t > 0 \\ \\ -t(25t + 24) > 0\\ $\left\{ \begin{gathered} t \ \textless \ 0 \\ t \ \textgreater \ -\dfrac{24}{25} \\ \end{gathered} \right.$" alt=" (2): \ 1 - \log_{2}^{2}x > 1 + \dfrac{8}{3}\log_{2}x + \dfrac{16}{9}\log_{2}^{2}x \\ \\ \log_{2}x = t \\ \\ 1 - t^{2} > 1 + \dfrac{8t}{3} + \dfrac{16t^{2}}{9} \\ \\ 9 - 9t^{2} > 9 + 24t + 16t^{2} \\ \\ -25t^{2} - 24t > 0 \\ \\ -t(25t + 24) > 0\\ $\left\{ \begin{gathered} t \ \textless \ 0 \\ t \ \textgreater \ -\dfrac{24}{25} \\ \end{gathered} \right.$" align="absmiddle" class="latex-formula">
Пересечём (2) и (3):
<img src="
https://tex.z-dn.net/?f=%283%29%3A+%5C+x+%5Cin+R+%5C%5C+%5C%5C+%284%29%3A+%5C+1+%2B++%5Cdfrac%7B4%7D%7B3%7D%5Clog_%7B2%7Dx+%5C+%5Ctextless+%5C++0+%5C%5C+%5C%5C+%5Clog_%7B2%7Dx+%5C+%5Ctextless+%5C++-+%5Cdfrac%7B3%7D%7B4%7D+%5C%5C+%5C%5C+x+%5C+%5Ctextless+%5C+++%5Cdfrac%7B1%7D%7B+%5Csqrt%5B4%5D%7B2%5E%7B3%7D%7D%7D+" id="TexFormula15" title="(3): \ x \in R \\ \\ (4): \ 1 + \dfrac{4}{3}\log_{2}x \ \textless \ 0 \\ \\ \log_{2}x \ \textless \ - \dfrac{3}{4} \\ \\ x \ \textless \ \dfrac{1}{ \sqrt[4]{2^{3}}} " alt="(