Уравнение |x^2-4*x-1|=a имеет четыре различных корня если: 1) a=10 2) a=8 3) a>6 4) a...

0 голосов
29 просмотров

Уравнение |x^2-4*x-1|=a имеет четыре различных корня если: 1) a=10 2) a=8 3) a>6 4) a принадлежит (0;5) 5) a не существует?


Математика (61 баллов) | 29 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Молульное выражение либо равно нулю, либо больше нуля. При нулевом значении, модуль можно отбросить, но тогда уравнение не будет иметь 4 корня, так что параметр строго больше нуля.

Квадратное уравнение может иметь два различных корня. В добавок, так как оно в модуле, то можно рассмотреть два случая, где оно может принимать как отрицательное, так и положительное значения. Тогда добавляются еще пару решений исходного уравнения.

Чтобы квадратное уравнение имело два различных действительных корня дискриминант должет быть положителен, то есть больше нуля.


image
0

Спасибо, вы очень помогли. Весьма признателен!