1) Второй замечательный предел:
![\lim_{x \to \infty} (1+\frac{1}{x})^{x}=e \lim_{x \to \infty} (1+\frac{1}{x})^{x}=e](https://tex.z-dn.net/?f=++%5Clim_%7Bx+%5Cto+%5Cinfty%7D+%281%2B%5Cfrac%7B1%7D%7Bx%7D%29%5E%7Bx%7D%3De+)
![\lim_{x \to \infty}( \frac {2x}{2x-3})^{x}=\lim_{x \to \infty}( \frac {2x-3+3}{2x-3})^{x}=\\ \\ \lim_{x \to \infty}(( 1+\frac {3}{2x-3})^{2x-3})^{\frac{x}{2x-3}= =e^{ \lim_{x \to \infty}{\frac{x}{2x-3}}=e^{\frac{1}{2}}=\sqrt{e} \lim_{x \to \infty}( \frac {2x}{2x-3})^{x}=\lim_{x \to \infty}( \frac {2x-3+3}{2x-3})^{x}=\\ \\ \lim_{x \to \infty}(( 1+\frac {3}{2x-3})^{2x-3})^{\frac{x}{2x-3}= =e^{ \lim_{x \to \infty}{\frac{x}{2x-3}}=e^{\frac{1}{2}}=\sqrt{e}](https://tex.z-dn.net/?f=++%5Clim_%7Bx+%5Cto+%5Cinfty%7D%28+%5Cfrac+%7B2x%7D%7B2x-3%7D%29%5E%7Bx%7D%3D%5Clim_%7Bx+%5Cto+%5Cinfty%7D%28+%5Cfrac+%7B2x-3%2B3%7D%7B2x-3%7D%29%5E%7Bx%7D%3D%5C%5C+%5C%5C+%5Clim_%7Bx+%5Cto+%5Cinfty%7D%28%28+1%2B%5Cfrac+%7B3%7D%7B2x-3%7D%29%5E%7B2x-3%7D%29%5E%7B%5Cfrac%7Bx%7D%7B2x-3%7D%3D+%3De%5E%7B+%5Clim_%7Bx+%5Cto+%5Cinfty%7D%7B%5Cfrac%7Bx%7D%7B2x-3%7D%7D%3De%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%3D%5Csqrt%7Be%7D+++)
2)
f(x₀)=2·1-3·1+1=0
f`(x)=(2x^2-3x+1)`=4x-3
f`(x₀)=4·1-3=1
y - f(x₀) = f`(x₀)·(x - x₀)
y - 0 = 1· (x -1)
y= x - 1
О т в е т. у = х - 1
3)
Применяем формулу производной сложной функции
y=lnu
y`=(1/u)·u`=u`/u
u=cos²x+√(1+cos⁴x)
u`=(cos²x+√(1+cos⁴x))`=2cosx·(cosx)`+(1/2√(1+cos⁴x))·(1+cos^4x)`=
= - 2cosx·sinx +(4cos³x·(-sinx))/(2√(1+cos⁴x))
u`(π/2)=0
dy(π/2)=0