0\; ,\; \; x-2\ne 1} \atop {2x^2-11x+16>0}} \right. \; \left \{ {{x>2\; ,\; x\ne 3} \atop {D=-7<0\; \to \; x\in (-\infty ,+\infty )}} \right. \; \Rightarrow \\\\x\in (2,3)\cup (3,+\infty )\\\\log_{x-2}(2x^2-11x+16)=log_{x-2}(x-2)^2\\\\2x^2-11x+16=x^2-4x+4\\\\x^2-7x+12=0\\\\x_1=3\; ,\; x_2=4\; \; (teorema\; Vieta)\\\\x_1=3\notin ODZ\\\\Otvet:\; \; x=4\; . " alt=" log_{x-2}(2x^2-11x+16)=2\\\\ODZ:\; \; \left \{ {{x-2>0\; ,\; \; x-2\ne 1} \atop {2x^2-11x+16>0}} \right. \; \left \{ {{x>2\; ,\; x\ne 3} \atop {D=-7<0\; \to \; x\in (-\infty ,+\infty )}} \right. \; \Rightarrow \\\\x\in (2,3)\cup (3,+\infty )\\\\log_{x-2}(2x^2-11x+16)=log_{x-2}(x-2)^2\\\\2x^2-11x+16=x^2-4x+4\\\\x^2-7x+12=0\\\\x_1=3\; ,\; x_2=4\; \; (teorema\; Vieta)\\\\x_1=3\notin ODZ\\\\Otvet:\; \; x=4\; . " align="absmiddle" class="latex-formula">