25) Область определения:
1) x² + 5x + 6 > 0
x² + 5x + 6 = 0
a = 1; b = 5; c = 6
D = b² - 4ac = 5² - 4 × 1 × 6 = 25 - 24 = 1
![x_{1} = \frac{-b + \sqrt{D}}{2a} = \frac{-5 + \sqrt{1}}{2*1} = \frac{-5 +1}{2} = -2 x_{1} = \frac{-b + \sqrt{D}}{2a} = \frac{-5 + \sqrt{1}}{2*1} = \frac{-5 +1}{2} = -2](https://tex.z-dn.net/?f=+x_%7B1%7D+%3D+%5Cfrac%7B-b+%2B+%5Csqrt%7BD%7D%7D%7B2a%7D+%3D+%5Cfrac%7B-5+%2B+%5Csqrt%7B1%7D%7D%7B2%2A1%7D+%3D+%5Cfrac%7B-5+%2B1%7D%7B2%7D+%3D+-2+)
![x_{2} = \frac{-b - \sqrt{D}}{2a} = \frac{-5 - \sqrt{1}}{2*1} = \frac{-5 -1}{2} = -3 x_{2} = \frac{-b - \sqrt{D}}{2a} = \frac{-5 - \sqrt{1}}{2*1} = \frac{-5 -1}{2} = -3](https://tex.z-dn.net/?f=+x_%7B2%7D+%3D+%5Cfrac%7B-b+-+%5Csqrt%7BD%7D%7D%7B2a%7D+%3D+%5Cfrac%7B-5+-+%5Csqrt%7B1%7D%7D%7B2%2A1%7D+%3D+%5Cfrac%7B-5+-1%7D%7B2%7D+%3D+-3+)
x ∈ (-∞; -3)∪(-2; +∞)
2) -x² + 6x - 8 = 0
x² - 6x + 8 = 0
a = 1; b = -6; c = 8
D = b² - 4ac = (-5)² - 4 × 1 × 8 = 36 - 32 = 4
![x_{1} = \frac{-b + \sqrt{D}}{2a} = \frac{-(-6) + \sqrt{4}}{2*1} = \frac{6 +2}{2} = 4 x_{1} = \frac{-b + \sqrt{D}}{2a} = \frac{-(-6) + \sqrt{4}}{2*1} = \frac{6 +2}{2} = 4](https://tex.z-dn.net/?f=+x_%7B1%7D+%3D+%5Cfrac%7B-b+%2B+%5Csqrt%7BD%7D%7D%7B2a%7D+%3D+%5Cfrac%7B-%28-6%29+%2B+%5Csqrt%7B4%7D%7D%7B2%2A1%7D+%3D+%5Cfrac%7B6+%2B2%7D%7B2%7D+%3D+4+)
![x_{2} = \frac{-b - \sqrt{D}}{2a} = \frac{-(-6) - \sqrt{4}}{2*1} = \frac{6 -2}{2} = 2 x_{2} = \frac{-b - \sqrt{D}}{2a} = \frac{-(-6) - \sqrt{4}}{2*1} = \frac{6 -2}{2} = 2](https://tex.z-dn.net/?f=+x_%7B2%7D+%3D+%5Cfrac%7B-b+-+%5Csqrt%7BD%7D%7D%7B2a%7D+%3D+%5Cfrac%7B-%28-6%29+-+%5Csqrt%7B4%7D%7D%7B2%2A1%7D+%3D+%5Cfrac%7B6+-2%7D%7B2%7D+%3D+2++)
Метод интервалов:
......-...........+.............-............+.............-
---------о---------о---------●---------●---------> x
...........-3////////-2............2/////////4
Значит, x ∈ (-3; -2)∪[2; 4]
26) Область определения:
1) x - 1 > 0
x > 1
x ∈ (1; ∞)
2) x³ - 4x² + x - 4 = 0
x² × (x - 4) + x - 4 = 0
(x - 4)×(x² + 1) = 0
x - 4 = 0 ⇒ x = 4
x² + 1 = 0 ⇒ x² ≠ -1 ⇒ x ∉ R
Метод интервалов:
.....+............-.............+
---------о---------●---------> x
/////////1.............4//////////
Значит, x ∈ (-∞; 1)∪[4; +∞)
27) Область определения:
1) x - 4 ≠ 0
x ≠ 4
2) x³ - 2x² - 9х + 18 = 0
x² × (x - 2) - 9(x - 2) = 0
(x - 2)×(x² - 9) = 0
x - 2 = 0 ⇒ x = 2
x² - 9 = 0 ⇒ x² = 9 ⇒ x = ±√9 = ±3
Метод интервалов:
......-............-..............-.............-.............+
---------●---------●---------●---------о---------> x
...........-3............2............3............4///////////
Значит, x ∈ (4; +∞)