ПОМОГИТЕ, ПОЖАЛУЙСТА Известно, что уравнение bx^2-(a-3b)x+b=0 имеет два совпадающих...

0 голосов
37 просмотров

ПОМОГИТЕ, ПОЖАЛУЙСТА
Известно, что уравнение bx^2-(a-3b)x+b=0 имеет два совпадающих корня. Доказать, что уравнение x^2+(a-b)x+(ab-b^2+1)=0 не имеет корней.


Алгебра (369 баллов) | 37 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

уравнение bx^2-(a-3b)x+b=0 имеет два совпадающих корня

это значит, что дискриминант = 0 (D=b^2-4ac)

a^2-6ab+9b^2-4b^2=a^2-6ab+5b^2=0

Рассмотрим дискриминант уравнения x^2+(a-b)x+(ab-b^2+1)=0

(a-b)^2-4(ab-b^2+1)= a^2-2ab+b^2-4ab+4b^2-4= (a^2-6ab+5b^2)-4 выражение в скобках = 0 из первого уравнения, значит дискриминант второго 0-4=-4<0 меньше 0.</p>

Нет решений в действительных числах. Доказано

(316k баллов)