Рассмотрим f(x₂) - f(x₁), при x₂ > x₁.
a) f(x₂) - f(x₁) = 2 - x₂² - (2 - x₁²) = 2 - x₂² - 2 + x₁² = x₁² - x₂² = (x₁ - x₂) (x₁ + x₂).
Поскольку: 1) x₂ > x₁, то x₁ - x₂ < 0; 2) хє(-∞; 0], то x₁ + x₂ < 0. Отсюда (x₁ - x₂) (x₁ + x₂) > 0 и f(x₂) - f(x₁) >0, т.е. f(x₂) > f(x₁). А это значит (по определению), что функция f(x) возрастает на промежутке (-∞; 0].
б) ![g(x_{2}) - g(x_{1}) = \frac{3-2x_{2}}{x_{2}} -\frac{3-2x_{1}}{x_{1}} = \frac{(3-2x_{2})x_{1}-(3-2x_{1})x_{2}}{x_{2}x_{1}}= \frac{3x_{1}-2x_{2}x_{1}-3x_{2}+2x_{1}x_{2}}{x_{2}x_{1}}=\frac{3x_{1}-3x_{2}}{x_{2}x_{1}}=\frac{3(x_{1}-x_{2})}{x_{2}x_{1}} g(x_{2}) - g(x_{1}) = \frac{3-2x_{2}}{x_{2}} -\frac{3-2x_{1}}{x_{1}} = \frac{(3-2x_{2})x_{1}-(3-2x_{1})x_{2}}{x_{2}x_{1}}= \frac{3x_{1}-2x_{2}x_{1}-3x_{2}+2x_{1}x_{2}}{x_{2}x_{1}}=\frac{3x_{1}-3x_{2}}{x_{2}x_{1}}=\frac{3(x_{1}-x_{2})}{x_{2}x_{1}}](https://tex.z-dn.net/?f=+g%28x_%7B2%7D%29+-+g%28x_%7B1%7D%29+%3D++%5Cfrac%7B3-2x_%7B2%7D%7D%7Bx_%7B2%7D%7D+-%5Cfrac%7B3-2x_%7B1%7D%7D%7Bx_%7B1%7D%7D+%3D+%5Cfrac%7B%283-2x_%7B2%7D%29x_%7B1%7D-%283-2x_%7B1%7D%29x_%7B2%7D%7D%7Bx_%7B2%7Dx_%7B1%7D%7D%3D+%5Cfrac%7B3x_%7B1%7D-2x_%7B2%7Dx_%7B1%7D-3x_%7B2%7D%2B2x_%7B1%7Dx_%7B2%7D%7D%7Bx_%7B2%7Dx_%7B1%7D%7D%3D%5Cfrac%7B3x_%7B1%7D-3x_%7B2%7D%7D%7Bx_%7B2%7Dx_%7B1%7D%7D%3D%5Cfrac%7B3%28x_%7B1%7D-x_%7B2%7D%29%7D%7Bx_%7B2%7Dx_%7B1%7D%7D+)
Поскольку 3(х₁ - х₂) < 0, a х₁х₂ > 0 на промежутке хє(0; ∞), то
, а значит g(x₂) - g(x₁) < 0; g(x₂) < g(x₁). Отсюда следует, что функция g(x) убывающая на промежутке (0; ∞).