Разложите многочлен ** множители (x+1)(x+3)(x+5)(x+7)+15

0 голосов
36 просмотров

Разложите многочлен на множители (x+1)(x+3)(x+5)(x+7)+15


Алгебра (74 баллов) | 36 просмотров
Дано ответов: 2
0 голосов
Правильный ответ

Решение ниже .Если что ,я использовал схему Горнера

(2.7k баллов)
0

Спасибо большое!

0 голосов

(x+1)(x+3)(x+5)(x+7)+15 =
=((x+1)(x+7))((x+3)(x+5))+15=
=(x²+8x+7)(x²+8x+15)+15=

далее делаем замену
x²+8x+7=y

=y(y+8)+15=y²+8y+15=(y+3)(y+5)=
=(x²+8x+10)(x²+8x+12)=(x²+8x+10) (x+2)(x+6)

решаем
x²+8x+10 =0
x1,2=-4±√(16-10)= -4±✓6

следовательно

(x+1)(x+3)(x+5)(x+7)+15=
=(x+4+√6)(x+4-√6) (x+2)(x+6)



(25.0k баллов)
0

Спасибо!