6×4^x-13×6^x+6×9^x=0
Делим на 6^х: 6× (2/3)^х -13 + 6× (3/2)^х = 0 Пусть (2/3)^х = а; 6 а + 6/а - 13 =0 6а^2 - 13 а + 6=0 D = 169 - 144 = 25 а = 3/2; (2/3)^х = 3/2; х = -1 а = 2/3; (2/3)^х = 2/3; х = 1 Ответ: -1; 1.
6•4^x-13•6^x+6•9^x=0 |:9^x>0 6•(4/9)^x-13•(6/9)^x+6=0 6•(2/3)^(2x)-13(2/3)^x+6=0 (2/3)^x=t>0 6•t²-13t+6=0 D=169-36•4=169-144=25=5² t=(13±5)/12 t1=18/12=3/2 t2=8/12=2/3 1)(2/3)^x=2/3 x=1 2)(2/3)^x=3/2 (2/3)^x=(2/3)^(-1) x=-1 ответ -1;1