Помогите пожалуйста решить задачу. Задание: Исследование функций Проведите по общей схеме...

0 голосов
33 просмотров

Помогите пожалуйста решить задачу.
Задание: Исследование функций
Проведите по общей схеме исследование функции и постройте ее график.
f(x)=x³−1

Схема исследования функций
При исследовании функций мы будем придерживаться описанной схемы. В общем случае исследование предусматривает решение следующих задач:

Найти области определения и значений данной функции f.
Выяснить, обладает ли функция особенностями, облегчающими исследование, т. е. является ли функция f: а) четной или нечетной; б) периодической.
Вычислить координаты точек пересечения графика с осями координат.
Найти промежутки знакопостоянства функции f.
Выяснить, на каких промежутках функция f возрастает, а на каких убывает.
Найти точки экстремума, вид экстремума (максимум или минимум) и вычислить значения f в этих точках.
Исследовать поведение функции f в окрестности характерных точек, не входящих в область определения (например, точка x=0 для функции f(x)=1x ) и при больших (по модулю) значениях аргумента.
Необходимо заметить, что этот план имеет примерный характер. Так, для нахождения точек пересечения с осью абсцисс надо решить уравнение f(x)=0, чего мы не умеем делать даже в случае, когда f(x), например, многочлен пятой степени. (Существуют, правда, методы, которые во многих случаях позволяют найти число корней такого уравнения и сами корни с любой точностью.) Поэтому часто тот или иной этап исследования приходится опускать. Однако по возможности в ходе исследования функций желательно придерживаться этой схемы.

Наиболее трудным этапом исследования является, как правило, поиск промежутков возрастания (убывания), точек экстремума. Далее вы познакомитесь с общими методами решения этих задач, основанными на применении методов математического анализа.

Вертикальные прямые, к которым неограниченно приближается график функции f (например, прямая x=0 для функции f(x)=1x или прямые x=±10 для графика функции, изображенного на рисунке 15в), называют вертикальными асимптотами.

Чаще всего график имеет вертикальную асимптоту x=a в случае, если выражение, задающее данную функцию, имеет вид дроби, знаменатель которой обращается в нуль в точке a, а числитель нет. Например, график функции f(x)=1x имеет вертикальную асимптоту x=0. Для графика функции f(x)=tgx вертикальными асимптотами являются прямые x=π2+2πn, где n∈Z.

Если график функции неограниченно приближается к некоторой горизонтальной (в случае функции f(x)=1x2+1 - это прямая y=0 см. рис. 16б) или наклонной (прямая y=x для графика функции f(x)=x+1x) прямой при неограниченном возрастании (по модулю) x, то такую прямую называют горизонтальной (соответственно наклонной) асимптотой.


Математика (78 баллов) | 33 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

1) Найти области определения и значений данной функции f.

Для аргумента и функции нет ограничений: их значения - вся числовая ось.

2) Выяснить, обладает ли функция особенностями, облегчающими исследование, т. е. является ли функция f: а) четной или нечетной:

f(-x)=(-x)³−1 = -x³−1 = -(x³+1). Значит, функция не чётная и не нечётная.

б) не периодическая.

3) Вычислить координаты точек пересечения графика с осями координат:

- пересечение с осью Оу (х = 0), у = -1.

- пересечение с осью Ох (у = 0), x³−1 = 0, x³ = 1, x = ∛1 = 1.

4) Найти промежутки знакопостоянства функции f.

На основе нулей функции имеем:

- функция отрицательна при х < 1 (x ∈ (-∞; 1),

- функция положительна при х > 1 (x ∈ (1; +∞).

5) на каких промежутках функция f возрастает, а на каких убывает.

Найти точки экстремума, вид экстремума (максимум или минимум) и вычислить значения f в этих точка.

Находим производную функции и приравниваем нулю.

y' = 3x² = 0, x = 0 это критическая точка. Находим знаки производной левее и правее этой точки. Так как переменная в квадрате, то знак её положителен. Значит, функция на всей области определения возрастает.

Поэтому не имеет ни минимума, ни максимума.

6) Вторая производная y'' = 6x. Поэтому в точке х = 0 функция имеет перегиб. При x < 0 график функции выпуклый, при x > 0 вогнутый.

7) Асимптот функция не имеет.


image
(309k баллов)