![image](https://tex.z-dn.net/?f=+log_%7B3%7D%28x+-+2%29++%3C++log_%7B9%7D%28x+%2B+10%29++%5C%5C++log_%7B3%7D%28x+-+2%29++%3C++log_%7B+%7B3%7D%5E%7B2%7D+%7D%28x+%2B+10%29++%5C%5C++log_%7B3%7D%28x+-+2%29+%3C+++%5Cfrac%7B1%7D%7B2%7D+log_%7B3%7D%28x+%2B+10%29++%5C%5C++log_%7B3%7D%28x+-+2%29++%3C++log_%7B3%7D++%7B%28x+%2B+10%29%7D%5E%7B+%5Cfrac%7B1%7D%7B2%7D+%7D++%5C%5C++log_%7B3%7D%28x+-+2%29++%3C++log_%7B3%7D+%5Csqrt%7Bx+%2B+10%7D++%5C%5C++x-+2+%3C++%5Csqrt%7Bx+%2B+10%7D++%5C%5C++%5Csqrt%7Bx+%2B+10%7D++%3E+x+-+2+%5C%5C+x+%2B+10+%3E++%7Bx%7D%5E%7B2%7D++-+4x+%2B+4+%5C%5C++%7Bx%7D%5E%7B2%7D++-+5x+-+6+%3C+0+%5C%5C+d+%3D++%7Bb%7D%5E%7B2%7D++-+4ac+%3D+25+-+4+%5Ctimes+%28+-+6%29+%3D+25+%2B+24+%3D+49+%5C%5C+x1+%3D++%5Cfrac%7B5+%2B+7%7D%7B2%7D++%3D++%5Cfrac%7B12%7D%7B2%7D++%3D+6+%5C%5C+x2+%3D++%5Cfrac%7B5+-+7%7D%7B2%7D++%3D++%5Cfrac%7B+-+2%7D%7B2%7D++%3D+-+1+%5C%5C+%28x+-+6%29%28x+%2B+1%29+%3C+0)
x - 2 \\ x + 10 > {x}^{2} - 4x + 4 \\ {x}^{2} - 5x - 6 < 0 \\ d = {b}^{2} - 4ac = 25 - 4 \times ( - 6) = 25 + 24 = 49 \\ x1 = \frac{5 + 7}{2} = \frac{12}{2} = 6 \\ x2 = \frac{5 - 7}{2} = \frac{ - 2}{2} = - 1 \\ (x - 6)(x + 1) < 0" alt=" log_{3}(x - 2) < log_{9}(x + 10) \\ log_{3}(x - 2) < log_{ {3}^{2} }(x + 10) \\ log_{3}(x - 2) < \frac{1}{2} log_{3}(x + 10) \\ log_{3}(x - 2) < log_{3} {(x + 10)}^{ \frac{1}{2} } \\ log_{3}(x - 2) < log_{3} \sqrt{x + 10} \\ x- 2 < \sqrt{x + 10} \\ \sqrt{x + 10} > x - 2 \\ x + 10 > {x}^{2} - 4x + 4 \\ {x}^{2} - 5x - 6 < 0 \\ d = {b}^{2} - 4ac = 25 - 4 \times ( - 6) = 25 + 24 = 49 \\ x1 = \frac{5 + 7}{2} = \frac{12}{2} = 6 \\ x2 = \frac{5 - 7}{2} = \frac{ - 2}{2} = - 1 \\ (x - 6)(x + 1) < 0" align="absmiddle" class="latex-formula">
ОДЗ:
![image](https://tex.z-dn.net/?f=x+-+2+%3E+0+%5C%5C+x+%3E+2+%5C%5C++%5C%5C+x+%2B+10+%3E+0+%5C%5C+x+%3E++-+10)
0 \\ x > 2 \\ \\ x + 10 > 0 \\ x > - 10" alt="x - 2 > 0 \\ x > 2 \\ \\ x + 10 > 0 \\ x > - 10" align="absmiddle" class="latex-formula">
=> х > 2.
Далее во вложении.
Наибольшее целое решение -- 5.
Ответ: 5.