1.
((√a-√b)⁻¹+(√a+√b)⁻¹)⁻²=(1/(√a-√b)+1/(√a+√b))⁻²=
=((√a-√b+√a+√b)/((√a-√b)(√a+√b))⁻²=(2√a/(a-b))⁻²=((a-b)/2√a)²=
=((√a-√b)*(√a+√b)/2√a)²=(√a-√b)²*(√a+√b)²/4a.
2.
((√a-√b)²*(√a+√b)²/4a)*(1/(√a+√b)²)=(√a-√b)²/4a=(a-2√ab+b)/4a=
=1/4-(1/2)*√(b/a)+(1/4)*(b/a)=1/4-(1/2)*√9+(1/4)*9=1/4-3/2+9/4=(1-6+9)/4=4/4=1.
Ответ: 2).