РНШИТЕ ПОЖАЛУЙСТА А8

0 голосов
46 просмотров

РНШИТЕ ПОЖАЛУЙСТА А8


image

Математика (157 баллов) | 46 просмотров
Дан 1 ответ
0 голосов

В прямоугольнике ABCD проведём диагональ AC и прямую EF, параллельную AC и делящую площадь прямоугольника в отношении 3 : 5.

Обозначим S(ΔEBF) = 3x, S(AEFCD) = 5x.

Тогда S(ABCD) = 3x + 5x = 8x, S(ΔABC) = 8x/2 = 4x.

ΔEBF ~ ΔABC с коэффициентом подобия k = √(3/4) = √3/2.

Поэтому прямая EF делит стороны прямоугольника в отношении √3 : (2-√3).

Ответ: 3).

(23.0k баллов)
0

Откуда сделан вывод (поэтому прямая ЕF делит....)???

0

Если k = sqrt3 / 2, тогда ЕВ = sqrt3*x, а АВ = 2х. Соответственно, АЕ = АВ - ЕВ = 2х - sqrt3*х = (2 - sqrt3)х. Получается, что ЕВ : АЕ = sqrt3*x / (2 - sqrt3)х = sqrt3 / (2 - sqrt3)х

0

* Получается, что ЕВ : АЕ = sqrt3*x : (2-sqrt3)*x = sqrt3* : (2-sqrt3).