Вариант решения: Пусть дана трапеция АВСD, в которой точки E,G,F и Н - середины сторон АВ, ВС, СD и AD соответственно. Причем EF - средняя линия трапеции, а GH - отрезок, соединяющий середины оснований. EF=GH (дано). Если в любом выпуклом четырехугольнике последовательно соединить середины сторон отрезками, то полученная фигура является параллелограммом, поскольку эти отрезки - средние линии треугольников, на которые делится четырехугольник своими диагоналями. Наш четырехугольник является прямоугольником, так как его диагонали равны (EF=GH). В прямоугольнике смежные стороны перпендикулярны, а диагонали в нашем случае параллельны сторонам, следовательно, диагонали взаимно перпендикулярны, что и требовалось доказать.