1 \\\ \sin x=\dfrac{7-13}{2\cdot6} = -\dfrac{1}{2} \\\ x_1=-\dfrac{\pi}{6} +2\pi k, \ k\in Z; \ x_2=-\dfrac{5\pi}{6} +2\pi n, \ n\in Z " alt=" 3\cos2x+7\sin x+2=0 \\\ 3(1-2\sin^2x)+7\sin x+2=0 \\\ 3-6\sin^2x+7\sin x+2=0 \\\ 6\sin^2x-7\sin x-5=0 \\\ D=(-7)^2-4\cdot6\cdot(-5)=169 \\\ \sin x\neq\dfrac{7+13}{2\cdot6} = \dfrac{5}{3} >1 \\\ \sin x=\dfrac{7-13}{2\cdot6} = -\dfrac{1}{2} \\\ x_1=-\dfrac{\pi}{6} +2\pi k, \ k\in Z; \ x_2=-\dfrac{5\pi}{6} +2\pi n, \ n\in Z " align="absmiddle" class="latex-formula">
Отбор корней:
Ответ: А) ; Б)