x⁴-5x²+6 = 0.
Это биквадратное уравнение вида ax⁴+bx²+c = 0. Решаём методом введения новой переменной.
Получаем:
x⁴-5x²+6 = 0
Пусть t = x². Получили квадратное уравнение:
t²-5t+6 = 0
D = b² - 4ac
D = (-5)² - 4·1·6 = 25-24 = 1 = 1².
D > 0
![\tt t_1,t_2 = \dfrac{-b б \sqrt{D}}{2a}. \\ \\ \\ t_1 = \dfrac{-(-5)+\sqrt{1}}{2 \cdot 1} = \dfrac{5+1}{2} = \dfrac{6}{2} = 3. \\ \\ \\ t_2 = \dfrac{-(-5)-\sqrt{1}}{2 \cdot 1} = \dfrac{5-1}{2} = \dfrac{4}{2} = 2. \tt t_1,t_2 = \dfrac{-b б \sqrt{D}}{2a}. \\ \\ \\ t_1 = \dfrac{-(-5)+\sqrt{1}}{2 \cdot 1} = \dfrac{5+1}{2} = \dfrac{6}{2} = 3. \\ \\ \\ t_2 = \dfrac{-(-5)-\sqrt{1}}{2 \cdot 1} = \dfrac{5-1}{2} = \dfrac{4}{2} = 2.](https://tex.z-dn.net/?f=+%5Ctt+t_1%2Ct_2+%3D+%5Cdfrac%7B-b+%D0%B1+%5Csqrt%7BD%7D%7D%7B2a%7D.+%5C%5C+%5C%5C+%5C%5C+t_1+%3D+%5Cdfrac%7B-%28-5%29%2B%5Csqrt%7B1%7D%7D%7B2+%5Ccdot+1%7D+%3D+%5Cdfrac%7B5%2B1%7D%7B2%7D+%3D+%5Cdfrac%7B6%7D%7B2%7D+%3D+3.+%5C%5C+%5C%5C+%5C%5C+t_2+%3D+%5Cdfrac%7B-%28-5%29-%5Csqrt%7B1%7D%7D%7B2+%5Ccdot+1%7D+%3D+%5Cdfrac%7B5-1%7D%7B2%7D+%3D+%5Cdfrac%7B4%7D%7B2%7D+%3D+2.+)
Возвращаемся к замене:
![\tt x^2 = 3 \\ x = б \sqrt{3} \\ \\ x^2 = 2 \\ x = б \sqrt{2} \tt x^2 = 3 \\ x = б \sqrt{3} \\ \\ x^2 = 2 \\ x = б \sqrt{2}](https://tex.z-dn.net/?f=+%5Ctt+x%5E2+%3D+3+%5C%5C+x+%3D+%D0%B1+%5Csqrt%7B3%7D+%5C%5C+%5C%5C+x%5E2+%3D+2+%5C%5C+x+%3D+%D0%B1+%5Csqrt%7B2%7D+)
ОТВЕТ: ![\tt б \sqrt{3}; \ б \sqrt{2} \tt б \sqrt{3}; \ б \sqrt{2}](https://tex.z-dn.net/?f=+%5Ctt+%D0%B1+%5Csqrt%7B3%7D%3B+%5C++%D0%B1+%5Csqrt%7B2%7D++)