![(ab^2+a^3)(a-b)\geq (a^2b+b^3)(a-b) (ab^2+a^3)(a-b)\geq (a^2b+b^3)(a-b)](https://tex.z-dn.net/?f=+%28ab%5E2%2Ba%5E3%29%28a-b%29%5Cgeq+%28a%5E2b%2Bb%5E3%29%28a-b%29+)
![(ab^2+a^3)(a-b)- (a^2b+b^3)(a-b)\geq 0 (ab^2+a^3)(a-b)- (a^2b+b^3)(a-b)\geq 0](https://tex.z-dn.net/?f=+%28ab%5E2%2Ba%5E3%29%28a-b%29-+%28a%5E2b%2Bb%5E3%29%28a-b%29%5Cgeq+0+)
![a(b^2+a^2)(a-b)- b(a^2+b^2)(a-b)\geq 0 a(b^2+a^2)(a-b)- b(a^2+b^2)(a-b)\geq 0](https://tex.z-dn.net/?f=+a%28b%5E2%2Ba%5E2%29%28a-b%29-+b%28a%5E2%2Bb%5E2%29%28a-b%29%5Cgeq+0+)
![a(a^2+b^2)(a-b)- b(a^2+b^2)(a-b)\geq 0 a(a^2+b^2)(a-b)- b(a^2+b^2)(a-b)\geq 0](https://tex.z-dn.net/?f=+a%28a%5E2%2Bb%5E2%29%28a-b%29-+b%28a%5E2%2Bb%5E2%29%28a-b%29%5Cgeq+0+)
Выносим за скобки два общих множителя:
![(a^2+b^2)(a-b)(a- b)\geq 0 (a^2+b^2)(a-b)(a- b)\geq 0](https://tex.z-dn.net/?f=+%28a%5E2%2Bb%5E2%29%28a-b%29%28a-+b%29%5Cgeq+0+)
![(a^2+b^2)(a-b)^2\geq 0 (a^2+b^2)(a-b)^2\geq 0](https://tex.z-dn.net/?f=+%28a%5E2%2Bb%5E2%29%28a-b%29%5E2%5Cgeq+0+)
Очевидно, что каждый множитель не отрицателен, значит, их произведение не отрицательно.
(a^2+b^2)(a-b)^2\geq 0 " alt=" \left \{ {{a^+b^2\geq}0 \atop {(a-b)^2\geq0}} \right. => (a^2+b^2)(a-b)^2\geq 0 " align="absmiddle" class="latex-formula">