3sin²x - √3 · sin2x + 5cos²x = 2
3sin²x - 2√3 · sinx · cosx + 5cos²x = 2sin²x + 2 cos²x
sin²x - 2√3 · sinx ·cosx + 3 cos²x = 0
Делим на cos²x ≠ 0
tg²x - 2√3 · tgx + 3 = 0
Замена t = tgx
t² - 2√3 · t + 3 = 0
D = 12 - 12 = 0
t1 = t2 = 0.5(2√3 ) = √3
Возвращаемся к замене
tgx = √3
x = π/3 + πk k∈Z