
0\; \; \Rightarrow |\sqrt{141,262}-11|=\sqrt{141,262}-11\; ;\\\\\sqrt{141,262}+11>0\; \; \Rightarrow \; \; |\sqrt{141,262}+11|=\sqrt{141,262}+11\; ;\; \; \star \star \\\\\\=\sqrt{141,262}-11-(\sqrt{141,262}+11)=-11-11=-22 " alt=" \star \star \; \; 11=\sqrt{121}\; ,\ \; 12=\sqrt{144}\; \; \Rightarrow \; \; 11<\sqrt{141,262}<12\; \; \Rightarrow \\\\\sqrt{141,262}-11>0\; \; \Rightarrow |\sqrt{141,262}-11|=\sqrt{141,262}-11\; ;\\\\\sqrt{141,262}+11>0\; \; \Rightarrow \; \; |\sqrt{141,262}+11|=\sqrt{141,262}+11\; ;\; \; \star \star \\\\\\=\sqrt{141,262}-11-(\sqrt{141,262}+11)=-11-11=-22 " align="absmiddle" class="latex-formula">