2\\\\\left \{ {{\frac{7}{3}2}} \right.\; \; \to \; \; \underline {\frac{7}{3}3,5:\; \; |7-2x|=-(7-2x)\; ,\; |3x-7|=3x-7\; ,\\\\|x+2|=x+2\\\\-7+2x<3x-7+x+2\; \; \to \; \; 2x>-2\; ,\; x>-1\\\\\left \{ {{x>3,52} \atop {x>-1}} \right. \; \; \to \; \; \underline {x>3,5}" alt="7-2x<-3x+7+x+2\; \; \to \; \; 0<2\\\\\left \{ {{-2<x\leq \frac{7}{3}} \atop {0<2}} \right.\; \; \to \; \; \underline {-2<x\leq \frac{7}{3}}\\\\3)\; \; \frac{7}{3}<x\leq 3,5:\; \; |7-2x|=7-2x\; ,\; |3x-7|=3x-7\; ,\\\\|x+2|=x+2\; ,\\\\7-2x<3x-7+x+2\; \; \to \; \; -6x<-12\; ,\; \; x>2\\\\\left \{ {{\frac{7}{3}2}} \right.\; \; \to \; \; \underline {\frac{7}{3}3,5:\; \; |7-2x|=-(7-2x)\; ,\; |3x-7|=3x-7\; ,\\\\|x+2|=x+2\\\\-7+2x<3x-7+x+2\; \; \to \; \; 2x>-2\; ,\; x>-1\\\\\left \{ {{x>3,52} \atop {x>-1}} \right. \; \; \to \; \; \underline {x>3,5}" align="absmiddle" class="latex-formula">