Решите неравенство: log(3)*(log1/3*x/1-x)<=3
По условию (заказчика на самом деле стоит не 3 а 0 в правой части) 1" alt="3>1" align="absmiddle" class="latex-formula"> \frac{x}{1-x} \geq (\frac{1}{3})^1" alt="(\frac{1}{3})^0>\frac{x}{1-x} \geq (\frac{1}{3})^1" align="absmiddle" class="latex-formula"> \frac{1}{1-x}-1 \geq \frac{1}{3}" alt="1>\frac{1}{1-x}-1 \geq \frac{1}{3}" align="absmiddle" class="latex-formula"> \frac{1}{1-x} \geq \frac{5}{3}" alt="2>\frac{1}{1-x} \geq \frac{5}{3}" align="absmiddle" class="latex-formula"> x \geq \frac{2}{5}" alt="\frac{1}{2} >x \geq \frac{2}{5}" align="absmiddle" class="latex-formula"> х є