Для любой точки внутри проводника напряженность результирующего поля равна сумме напряженности поля кулоновских сил и поля сторонних сил . Подставляя в (17.6), получимУмножим скалярно обе части на вектор , численно равный элементу длины проводника и направленный по касательной к проводнику в ту же сторону, что и вектор плотности тока Так как скалярное произведение совпадающих по направлению векторов и , равно произведению их модулей, то это равенство можно переписать в виде
С учетом
Интегрируя по длине проводника от сечения 1 до некоторого сечения 2 и учитывая, что сила тока во всех сечениях проводника одинакова, получаем(17.7)Интеграл численно равен работе, совершаемой кулоновскими силами при перенесении единичного положительного заряда с точки 1 в точку 2. В электростатике было показано, что
Таким образом,
где и - значение потенциала в т.1 и т.2.Интеграл, содержащий вектор напряженности поля, сторонних сил, представляет собой эдс , действующей на участке 1-2(17.9)Интеграл(17.10)равен сопротивлению участка цепи 1-2.Подставляя (17.10), (17.9) и (17.8) в (17.7), окончательно получим(17.11)Последнее уравнение выражает собой закон Ома в интегральной форме для участка цепи, содержащего эдс и формулируется следующим образом: падение напряжения на участке цепи равно сумме падений электрического потенциала на этом участке и эдс всех источников электрической энергии, включённых на участке.При замкнутой внешней цепи сумма падений электрических потенциалов и эдс источника равна сумме падений напряжения на внутреннем сопротивлении источника и во всей внешней цепи где или Отсюда(17.12)