sin(2x)* sin(6x) = cos(x)*cos(3x) ;
( сos(6x-2x) - cos(6x+2x) ) / 2 = ( cos(3x+x) +cos(3x-x) ) / 2 ;
cos4x -cos8x = cos4x + cos2x;
cos8x +cos2x =0 ;
2cos( (8x+2x)/2) *cos( (8x-2x)/2)=0 ;
cos5x*cos3x =0 ;
cos5x = 0 ⇒5x =π/2 +πk , k ∈ℤ ⇔x =π/10 +πk/5 ,k∈ℤ
или
cos3x =0 ⇒3x =π/2 +πk , k ∈ℤ ⇔x =π/6 +πk/3 ,k∈ℤ