Известная формула:
a\; \; \Rightarrow \; \; \left [ {{x>a} \atop {x<-a}} \right. \; \; \Rightarrow \\\\/////\; (-a)-----(a)\; /////" alt="|x|>a\; \; \Rightarrow \; \; \left [ {{x>a} \atop {x<-a}} \right. \; \; \Rightarrow \\\\/////\; (-a)-----(a)\; /////" align="absmiddle" class="latex-formula">
То есть значения "х" располагаются левее (-а) и правее (а) .
Вместо "х" может быть записано любое выражение, а вместо "а" - любое число. В формуле надо только заменить "х" и "а" на те выражения или числа, которые заданы в условии.
2x+1\; \; \Rightarrow \; \; \left \{ {{3x-2>2x+1} \atop {3x-2<-(2x+1)}} \right. \\\\a)\; \; 3x-2>2x+1\; ,\; \; x>3\\\\b)\; \; 3x-2<-(2x+1)\; ,\; \; 3x-2<-2x-1\; ,\; \; 5x<1\; ,\; x<\frac{1}{5}\\\\c)\; \; \left [ {{x>3} \atop {x<\frac{1}{5}}} \right. \; \; \Rightarrow \; \; \underline {x\in (-\infty ,\frac{1}{5})\cup (3,+\infty )}" alt="x\in [\; 1,5)\\\\c)\; \; \left [ {{x\in (-\infty ,-3\, ]\cup (5,+\infty )} \atop {x\in [\, 1,5)}} \right. \; \; \Rightarrow \; \; \underline {x\in (-\infty ,-3\, ]\cup [\, 1,5)\cup (5,+\infty )}\\\\\\203)\; \; |3x-2|>2x+1\; \; \Rightarrow \; \; \left \{ {{3x-2>2x+1} \atop {3x-2<-(2x+1)}} \right. \\\\a)\; \; 3x-2>2x+1\; ,\; \; x>3\\\\b)\; \; 3x-2<-(2x+1)\; ,\; \; 3x-2<-2x-1\; ,\; \; 5x<1\; ,\; x<\frac{1}{5}\\\\c)\; \; \left [ {{x>3} \atop {x<\frac{1}{5}}} \right. \; \; \Rightarrow \; \; \underline {x\in (-\infty ,\frac{1}{5})\cup (3,+\infty )}" align="absmiddle" class="latex-formula">
"х" принимает значения из промежутка между (-а) и (а) .