\frac{8\cdot 5^{x}-30}{2\cdot 5^{x}-7}+\frac{5^{x+1}-4}{5^{x}-1}\; ,\\\\t=5^{x}>0\; ,\; \; \frac{4t-17}{t-4}+\frac{10t-13}{2t-3}>\frac{8t-30}{2t-7}+\frac{5t-4}{t-1}\; ," alt="\frac{4\cdot 5^{x}-17}{5^{x}-4}+\frac{10\cdot 5^{x}-13}{2\cdot 5^{x}-3}>\frac{8\cdot 5^{x}-30}{2\cdot 5^{x}-7}+\frac{5^{x+1}-4}{5^{x}-1}\; ,\\\\t=5^{x}>0\; ,\; \; \frac{4t-17}{t-4}+\frac{10t-13}{2t-3}>\frac{8t-30}{2t-7}+\frac{5t-4}{t-1}\; ," align="absmiddle" class="latex-formula">
4-\frac{2}{2t-7}+5+\frac{1}{t-1}\\\\\frac{2}{2t-3}-\frac{1}{t-4}>\frac{1}{t-1}-\frac{2}{2t-7}\\\\\frac{2t-8-2t+3}{(2t-3)(t-4)}>\frac{2t-7-2t+2}{(t-1)(2t-7)}\\\\\frac{-5}{(2t-3)(t-4)}>\frac{-5}{(t-1)(2t-7)}\; |:(-5)\\\\\frac{1}{(2t-3)(t-4)}<\frac{1}{(t-1)(2t-7)}\\\\\frac{(t-1)(2t-7)-(2t-3)(t-4)}{(2t-3)(t-4)(t-1)(2t-7)}<0\\\\\frac{2t^2-9t+7-(2t^2-11t+12)}{(2t-3)(t-4)(t-1)(2t-7)}<0\\\\\frac{2t-5}{(2t-3)(t-4)(t-1)(2t-7)}<0\\\\2t-5=0\; ,\; t_1=2,5\; \; ;\; \; \; 2t-3=0\; ,\; t_2=1,5\; \; ;\; \; t-4=0\; ,\; t_3=4\; ;" alt="4-\frac{1}{t-4}+5+\frac{2}{2t-3}>4-\frac{2}{2t-7}+5+\frac{1}{t-1}\\\\\frac{2}{2t-3}-\frac{1}{t-4}>\frac{1}{t-1}-\frac{2}{2t-7}\\\\\frac{2t-8-2t+3}{(2t-3)(t-4)}>\frac{2t-7-2t+2}{(t-1)(2t-7)}\\\\\frac{-5}{(2t-3)(t-4)}>\frac{-5}{(t-1)(2t-7)}\; |:(-5)\\\\\frac{1}{(2t-3)(t-4)}<\frac{1}{(t-1)(2t-7)}\\\\\frac{(t-1)(2t-7)-(2t-3)(t-4)}{(2t-3)(t-4)(t-1)(2t-7)}<0\\\\\frac{2t^2-9t+7-(2t^2-11t+12)}{(2t-3)(t-4)(t-1)(2t-7)}<0\\\\\frac{2t-5}{(2t-3)(t-4)(t-1)(2t-7)}<0\\\\2t-5=0\; ,\; t_1=2,5\; \; ;\; \; \; 2t-3=0\; ,\; t_2=1,5\; \; ;\; \; t-4=0\; ,\; t_3=4\; ;" align="absmiddle" class="latex-formula">
0\\\\(0)---(1)+++(1,5)---(2,5)+++(3,5)---(4)+++\\\\t\in (0;1)\cup (1,5\, ;\, 2,5)\cup (3,5\, ;4)\\\\a)\; \; 0<5^{x}<1\; \; \; \to \; \; x<0\\\\b)\; \; 1,5<5^{x}<2,5\; \; \to \; \; log_51,5<x<log_52,5\\\\c)\; \; 3,5<5^{x}<4\; \; \to \; \; log_53,5<x<log_54\\\\Otvet:\; \; x\in (-\infty ;0)\cup (log_51,5\, ;\, \, log_52,5)\cup(log_53,5\, ;log_54)\. ." alt="t-1=0\; ,\; t_4=1\; \; ;\; \; 2t-7=0\; ,\; t_5=3,5\; \; ;\; \; t>0\\\\(0)---(1)+++(1,5)---(2,5)+++(3,5)---(4)+++\\\\t\in (0;1)\cup (1,5\, ;\, 2,5)\cup (3,5\, ;4)\\\\a)\; \; 0<5^{x}<1\; \; \; \to \; \; x<0\\\\b)\; \; 1,5<5^{x}<2,5\; \; \to \; \; log_51,5<x<log_52,5\\\\c)\; \; 3,5<5^{x}<4\; \; \to \; \; log_53,5<x<log_54\\\\Otvet:\; \; x\in (-\infty ;0)\cup (log_51,5\, ;\, \, log_52,5)\cup(log_53,5\, ;log_54)\. ." align="absmiddle" class="latex-formula">