ПОМОГИТЕ ПОЖАЛУЙСТА РЕШИТЬ НЕСКОЛЬКО

0 голосов
123 просмотров

ПОМОГИТЕ ПОЖАЛУЙСТА РЕШИТЬ НЕСКОЛЬКО


image

Алгебра (73 баллов) | 123 просмотров
Дан 1 ответ
0 голосов

task/29490961  Найти производную функции в точке  x₀                                                                                            

1) f(x) = 4x³+6x +3  ,  x₀  = 1 .

* * * правила: (u+v) ' = u ' + v ' ; [C*f(x )] ' =C*f ' (x)  ; (xⁿ )' nxⁿ ⁻ ¹  * * *

f '(x) =( 4x³+6x +3 )' =( 4x³) ' +(6x)' +3' = 4*(x³) ' +6*(x)' +0=4*3x²+6*1=12x²+6.

f '(x₀)  = f '( 1) = 12*1²+6 = 18 .

2) f(x) = x²- 4√x  ,  x₀  = 4 .

f '(x) =( x²- 4√x ) ' =( x²)' - 4*(√x ) ' = 2x - 4*(1 / 2√x ) = 2x -2 /√x =2(x - 1/√x)

f '(x₀)   = f '( 4) = 2(4 - 1 /√4) = 2(4 -0,5)=2*3,5 =7 .

3) f(x) = (4x - 7) / (x² +4)  ,  x₀  = 0 .  * * * правила: (u/v) ' = (u '*v - u*v ' ) / v²  * * *

f '(x) = [ ( 4x-7) / x² +4)]  ' =[ ( 4x-7)'*(x² +4 ) - ( 4x-7)*(x² +4) '] / (x² +4)² =

=[ 4(x² +4) -(4x-7)2x ] / (x² +4)² = -2(2x² -7x - 8) / ( x² +4)²

f '(x₀)   = f '( 0) =  -2(2*0² +7*0 - 8) / ( 0² +4)² = -2*(-8)8/16 = 1.

4) f(x) =x*sinx  ,  x₀  = π/2 . * * *  правила: (u*v) ' = u ' *v + u* v '  * * *

f '(x) = (x*sinx) ' =(x) '*sinx +x*(sinx)' = 1*sinx +x*cosx = sinx +xcosx .

f '(x₀)   = f '( π/2) =sin(π/2) +(π/2)*cos(π/2) =1 +(π/2)*0  = 1 .

5)  f(x) =2x*cosx  ,  x₀  = 0 .

f '(x) = (2x*cosx) ' =2*[(x) '*cos +x*(cos)' ] = 2(cosx- xsinx ) .

f '(x₀)   = f '( 0) =2(cos0 - 0*sin0) =2(1 -0)  = 2 .

(181k баллов)
0

Спасибо вам огромное !

0

снял [