3) х1=2
у1=8
4)
![image](https://tex.z-dn.net/?f=%24%24x_%7B1%7D+%3D+%5Cfrac%7B1%7D%7B%5Cleft%28%5Csqrt%7B3%7D+%2B+2%5Cright%29%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%7D+%5Cleft%28%5Csqrt%5B3%5D%7B%5Csqrt%7B3%7D+%2B+2%7D+%2B+%5Csqrt%7B3%7D+%2B+2%5Cright%29%24%24%3C%2Fp%3E%3Cp%3E%0A%3D%0A%24%24%5Cfrac%7B1%7D%7B%5Cleft%28%5Csqrt%7B3%7D+%2B+2%5Cright%29%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%7D+%5Cleft%28%5Csqrt%5B3%5D%7B%5Csqrt%7B3%7D+%2B+2%7D+%2B+%5Csqrt%7B3%7D+%2B+2%5Cright%29%24%24%0A%3D%0A2.195)
=
$$\frac{1}{\left(\sqrt{3} + 2\right)^{\frac{2}{3}}} \left(\sqrt[3]{\sqrt{3} + 2} + \sqrt{3} + 2\right)$$
=
2.195" alt="$$x_{1} = \frac{1}{\left(\sqrt{3} + 2\right)^{\frac{2}{3}}} \left(\sqrt[3]{\sqrt{3} + 2} + \sqrt{3} + 2\right)$$
=
$$\frac{1}{\left(\sqrt{3} + 2\right)^{\frac{2}{3}}} \left(\sqrt[3]{\sqrt{3} + 2} + \sqrt{3} + 2\right)$$
=
2.195" align="absmiddle" class="latex-formula">
![$$y_{1} = \frac{9}{\sqrt[3]{27 \sqrt{3} + 54}} + 4 + \sqrt[3]{27 \sqrt{3} + 54}$$
=
$$\frac{3}{\sqrt[3]{\sqrt{3} + 2}} + 4 + 3 \sqrt[3]{\sqrt{3} + 2}$$
=
10.587 $$y_{1} = \frac{9}{\sqrt[3]{27 \sqrt{3} + 54}} + 4 + \sqrt[3]{27 \sqrt{3} + 54}$$
=
$$\frac{3}{\sqrt[3]{\sqrt{3} + 2}} + 4 + 3 \sqrt[3]{\sqrt{3} + 2}$$
=
10.587](https://tex.z-dn.net/?f=%24%24y_%7B1%7D+%3D+%5Cfrac%7B9%7D%7B%5Csqrt%5B3%5D%7B27+%5Csqrt%7B3%7D+%2B+54%7D%7D+%2B+4+%2B+%5Csqrt%5B3%5D%7B27+%5Csqrt%7B3%7D+%2B+54%7D%24%24%0A%3D%0A%24%24%5Cfrac%7B3%7D%7B%5Csqrt%5B3%5D%7B%5Csqrt%7B3%7D+%2B+2%7D%7D+%2B+4+%2B+3+%5Csqrt%5B3%5D%7B%5Csqrt%7B3%7D+%2B+2%7D%24%24%0A%3D%0A10.587)