Мистер Фокс сделал любопытный автомат: если в него засунуть карточку с числом M , то...

0 голосов
71 просмотров

Мистер Фокс сделал любопытный автомат: если в него засунуть карточку с числом M , то автомат выдаст такую же карточку, но с числом M+d, где d-наибольший натуральный делитель числа M , отличный от M. Полученную карточку можно снова засовывать в автомат.

Мистер Фокс выбрал число , которое делится на 2, но не делится на 4, и сунул карточку с этим числом в автомат. Полученную карточку он снова сунул в автомат, и так далее. Когда Мистер Фокс устал, у него была карточка с число 3 в 300 степени .M.Сколько операций сделал мистер Фокс со своим чудесным автоматом?


Математика (155 баллов) | 71 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Первоначально число М = 2d, т.к. число делится на 2, а наибольший делитель равен d

посмотрим как меняется число:

первая операция: 2d + d = 3d - снова наибольший делитель d, т.к. d не делится на 2

вторая операция: 3d + d = 4d - наибольший делитель 2d

третья операция: 4d + 2d = 6d - наибольший делитель 3d

четвертая операция: 6d + 3d = 9d - наибольший делитель 3d

пятая операция: 9d + 3d = 12d - наибольший делитель 6d

шестая операция: 12d + 6d = 18d - наибольший делитель 9d

седьмая операция 18d + 9d = 27d - наибольший делитель 9d

заметим, что каждая 3n-ая операция образует число 3ⁿ*2d = 3ⁿ*M

при n = 300 получим нужное число операций:

3 * n = 3 * 300 = 900

Ответ: 900 операций

(271k баллов)
0

СПАСИБО

0

спасибо

0

я сам решил на изи