Метод рационализации: .
0} \atop {6x^2+5x>0,\; 6x^2+5x\ne 1}} \right. \; \left \{ {{2(x-1)(x-0,5)>0} \atop {x(6x+5)>0,\; 6(x+1)(x-\frac{1}{6})\ne 0}} \right. \\\\\left \{ {{x\in (-\infty ;\, 0,5)\cup (1,+\infty )\qquad \qquad } \atop {x\in (-\infty ;-\frac{5}{6})\cup (0,+\infty )\; ,\; x\ne -1\; ,\; x\ne \frac{1}{6}}} \right. \\\\x\in (-\infty ,-1)\cup (-1,-\frac{5}{6})\cup (\frac{1}{6},\frac{1}{2})\cup (1,+\infty )\\\\\\(2x^2-3x+1-1)(6x^2+5x-1)\geq 0" alt="log_{6x^2+5x}(2x^2-3x+1)\geq 0\\\\ODZ:\; \; \left \{ {{2x^2-3x+1>0} \atop {6x^2+5x>0,\; 6x^2+5x\ne 1}} \right. \; \left \{ {{2(x-1)(x-0,5)>0} \atop {x(6x+5)>0,\; 6(x+1)(x-\frac{1}{6})\ne 0}} \right. \\\\\left \{ {{x\in (-\infty ;\, 0,5)\cup (1,+\infty )\qquad \qquad } \atop {x\in (-\infty ;-\frac{5}{6})\cup (0,+\infty )\; ,\; x\ne -1\; ,\; x\ne \frac{1}{6}}} \right. \\\\x\in (-\infty ,-1)\cup (-1,-\frac{5}{6})\cup (\frac{1}{6},\frac{1}{2})\cup (1,+\infty )\\\\\\(2x^2-3x+1-1)(6x^2+5x-1)\geq 0" align="absmiddle" class="latex-formula">