Меньшая сторона прямоугольника равна 5см, диагонали пересекаются под углом 60°. найдите...

0 голосов
127 просмотров

Меньшая сторона прямоугольника равна 5см, диагонали пересекаются под углом 60°. найдите диагонали прямоугольника


Геометрия (18 баллов) | 127 просмотров
0

ответ:5 и 5

Дан 1 ответ
0 голосов

Решение:

1. В прямоугольнике диагонали образуют треугольники, у которых углы при основании равны.

2. Угол BOC=AOD (как вертикальные); рассмотрим треугольник BOC: угол OBC=OCB, ВС=5 см. Т.к. в треугольнике сумма углов равна 180 градусам, то 180-60=120 гр, а 120:2=60 гр. Значит, OBC=OCB=60 гр., а треугольник BOC - равносторонний.

3. Треугольники BOC и AOD равны, т.к. угол BOC=AOD (как вертикальные), DAO=OCB=ADO=OBC (как внутренне накрест лежащие). BC=AD=BO=OC=AO=DO=5 см.

Значит, диагональ AC=DB (т.к. точка О середина пересечения диагоналей) = 10 см

Ответ: AC=DB=10 cv


image
(168 баллов)