Так как левая часть неравенства равна 0 при х=1 , х=-1 , х=2, причём х=-1 ,х=2 входят в ОДЗ, пишем ответ:
1\; ,\; \; ODZ:\; \left \{ {{2x+7\geq 0} \atop {x+2\ne 0}} \right. \; \; \left \{ {{x\geq -3,5} \atop {x\ne -2}} \right. \; \; \Rightarrow \\\\x\in [-3,5\, ;\, -2)\cup (-2;+\infty )\\\\\frac{\sqrt{2x+7}}{x+2}-1>0\; ,\; \; \frac{\sqrt{2x+7}-x-2}{x+2}>0\; \Rightarrow \\\\\left \{ {{\sqrt{2x+7}-x-2>0} \atop {x+2>0}} \right. \; \; ili\; \; \left \{ {{\sqrt{2x+7}-x-2<0} \atop {x+2<0}} \right. \\\\a)\; \; \left \{ {{\sqrt{2x+7}>x+2} \atop {x+2>0}} \right. \; \left \{ {{2x+7>x^2+2x+4} \atop {x>-2\; ,\; }} \right. " alt="2)\; \; \frac{\sqrt{2x+7}}{x+2}>1\; ,\; \; ODZ:\; \left \{ {{2x+7\geq 0} \atop {x+2\ne 0}} \right. \; \; \left \{ {{x\geq -3,5} \atop {x\ne -2}} \right. \; \; \Rightarrow \\\\x\in [-3,5\, ;\, -2)\cup (-2;+\infty )\\\\\frac{\sqrt{2x+7}}{x+2}-1>0\; ,\; \; \frac{\sqrt{2x+7}-x-2}{x+2}>0\; \Rightarrow \\\\\left \{ {{\sqrt{2x+7}-x-2>0} \atop {x+2>0}} \right. \; \; ili\; \; \left \{ {{\sqrt{2x+7}-x-2<0} \atop {x+2<0}} \right. \\\\a)\; \; \left \{ {{\sqrt{2x+7}>x+2} \atop {x+2>0}} \right. \; \left \{ {{2x+7>x^2+2x+4} \atop {x>-2\; ,\; }} \right. " align="absmiddle" class="latex-formula">
-2}} \right. \; \left \{ {{(x-\sqrt3)(x+\sqrt3)<0} \atop {x>-2}} \right. \; \left \{ {{x\in (-\sqrt3,\sqrt3)} \atop {x>-2}} \right. \; \to \; \; x\in (-\sqrt3,\sqrt3)\\\\b)\; \; \left \{ {{\sqrt{2x+7}-2}} \right. \; \left \{ {{(x-\sqrt3)(x+\sqrt3)<0} \atop {x>-2}} \right. \; \left \{ {{x\in (-\sqrt3,\sqrt3)} \atop {x>-2}} \right. \; \to \; \; x\in (-\sqrt3,\sqrt3)\\\\b)\; \; \left \{ {{\sqrt{2x+7}