ДАЮ 30 БАЛЛОВ В параллелограмме ABCD диагонали пересекаются в точке К и АВ=16, АD=7,...

0 голосов
504 просмотров

ДАЮ 30 БАЛЛОВ В параллелограмме ABCD диагонали пересекаются в точке К и АВ=16, АD=7, ВD=21. Найти АС, площадь параллелограмма, площадь треугольника АВК


Геометрия (81 баллов) | 504 просмотров
Дан 1 ответ
0 голосов

Полное решение прикрепляю.

Идея решения:

1) Сначала, используя основное свойство параллелограмма, находим АС. Напомню это свойство: AC^2 + BD^2 = 2*(AB^2 + AD^2).

2) Рассматриваем треугольник AKB. Из теоремы косинусов:

AB^2 = AK^2 + BK^2 - 2*AK*BK*cosAKB -

выражаем cosAKB.

3) Используем основное тригонометрическое тождество: sin²α + cos²α = 1, - чтобы найти sinAKB. Так как угол AKB меньше 180 градусов, то его синус положительный.

4) Находим площадь параллелограмма через диагонали и угол между ними по формуле: S = 0,5*BD*AC*sinAKB. Вообще, строго говоря, нужно брать острый угол как угол между диагоналями, то есть угол CKB, но так как их синусы равны, то это не имеет значения.

5) Вспоминаем, что диагонали параллелограмма делят его на четыре равновеликих (равных по площади) части, то есть площадь одной такой части будет равна одной четвертой площади параллелограмма. Отсюда площадь треугольника ABK S = Sпар/4.


image
(4.1k баллов)
0

СПАСИБО ТЕБЕ БОЛЬШОЕ ТЫ ПРОСТО СУПЕР