⇔
⇔![\left \{ {{\frac{4(x-y)^2+3(x+y)^2}{(x-y)(x+y)}=13 } \atop {(x-y)(x+y)=12}} \right. \left \{ {{\frac{4(x-y)^2+3(x+y)^2}{(x-y)(x+y)}=13 } \atop {(x-y)(x+y)=12}} \right.](https://tex.z-dn.net/?f=%5Cleft%20%5C%7B%20%7B%7B%5Cfrac%7B4%28x-y%29%5E2%2B3%28x%2By%29%5E2%7D%7B%28x-y%29%28x%2By%29%7D%3D13%20%7D%20%5Catop%20%7B%28x-y%29%28x%2By%29%3D12%7D%7D%20%5Cright.)
пусть x + y = a; x - y = b, тогда:
⇔![\left \{ {{4b^2+3a^2=13ab} \atop {ab=12}} \right. \left \{ {{4b^2+3a^2=13ab} \atop {ab=12}} \right.](https://tex.z-dn.net/?f=%5Cleft%20%5C%7B%20%7B%7B4b%5E2%2B3a%5E2%3D13ab%7D%20%5Catop%20%7Bab%3D12%7D%7D%20%5Cright.)
можно разложить на множители первое выражение:
![4b^2 - 13ab+3a^2 = 0,\\D = 169a^2 - 48a^2 = 121a^2 = (11a)^2,\\b_{1,2} = \frac{13a +- 11a}{8},\\b_{1} = 3a; b_{2} = 0,25a 4b^2 - 13ab+3a^2 = 0,\\D = 169a^2 - 48a^2 = 121a^2 = (11a)^2,\\b_{1,2} = \frac{13a +- 11a}{8},\\b_{1} = 3a; b_{2} = 0,25a](https://tex.z-dn.net/?f=4b%5E2%20-%2013ab%2B3a%5E2%20%3D%200%2C%5C%5CD%20%3D%20169a%5E2%20-%2048a%5E2%20%3D%20121a%5E2%20%3D%20%2811a%29%5E2%2C%5C%5Cb_%7B1%2C2%7D%20%3D%20%5Cfrac%7B13a%20%2B-%2011a%7D%7B8%7D%2C%5C%5Cb_%7B1%7D%20%3D%203a%3B%20b_%7B2%7D%20%3D%200%2C25a)
тогда ![4b^2-13ab+3a^2 = 4(b - 3a)(b - 0,25a) = (b - 3a)(4b - a) 4b^2-13ab+3a^2 = 4(b - 3a)(b - 0,25a) = (b - 3a)(4b - a)](https://tex.z-dn.net/?f=4b%5E2-13ab%2B3a%5E2%20%3D%204%28b%20-%203a%29%28b%20-%200%2C25a%29%20%3D%20%28b%20-%203a%29%284b%20-%20a%29)
и система будет такой:
⇔
⇔ ![\left \{ {{a = \frac{12}{b} } \atop {(b-\frac{36}{b})(4b-\frac{12}{b})=0 }} \right. \left \{ {{a = \frac{12}{b} } \atop {(b-\frac{36}{b})(4b-\frac{12}{b})=0 }} \right.](https://tex.z-dn.net/?f=%5Cleft%20%5C%7B%20%7B%7Ba%20%3D%20%5Cfrac%7B12%7D%7Bb%7D%20%7D%20%5Catop%20%7B%28b-%5Cfrac%7B36%7D%7Bb%7D%29%284b-%5Cfrac%7B12%7D%7Bb%7D%29%3D0%20%7D%7D%20%5Cright.)
можно решить второе, домножив на b:
⇔
![\left \{ {{b = +- 6} \atop {b = +-\sqrt{3} }} \right. \left \{ {{b = +- 6} \atop {b = +-\sqrt{3} }} \right.](https://tex.z-dn.net/?f=%5Cleft%20%5C%7B%20%7B%7Bb%20%3D%20%2B-%206%7D%20%5Catop%20%7Bb%20%3D%20%2B-%5Csqrt%7B3%7D%20%7D%7D%20%5Cright.)
получается вот это:
![\left \{ {{b=6} \atop {a=2}} \right. \left \{ {{b=-6} \atop {a=-2}} \right. \left \{ {{b=\sqrt{3} } \atop {a=4\sqrt{3} }} \right. \left \{ {{b=-\sqrt{3} } \atop {a=-4\sqrt{3} }} \right. \left \{ {{b=6} \atop {a=2}} \right. \left \{ {{b=-6} \atop {a=-2}} \right. \left \{ {{b=\sqrt{3} } \atop {a=4\sqrt{3} }} \right. \left \{ {{b=-\sqrt{3} } \atop {a=-4\sqrt{3} }} \right.](https://tex.z-dn.net/?f=%5Cleft%20%5C%7B%20%7B%7Bb%3D6%7D%20%5Catop%20%7Ba%3D2%7D%7D%20%5Cright.%20%5Cleft%20%5C%7B%20%7B%7Bb%3D-6%7D%20%5Catop%20%7Ba%3D-2%7D%7D%20%5Cright.%20%5Cleft%20%5C%7B%20%7B%7Bb%3D%5Csqrt%7B3%7D%20%7D%20%5Catop%20%7Ba%3D4%5Csqrt%7B3%7D%20%7D%7D%20%5Cright.%20%5Cleft%20%5C%7B%20%7B%7Bb%3D-%5Csqrt%7B3%7D%20%7D%20%5Catop%20%7Ba%3D-4%5Csqrt%7B3%7D%20%7D%7D%20%5Cright.)
подставляем x и y:
![\left \{ {{x-y=6} \atop {x+y=2}} \right. \left \{ {{x-y=-6} \atop {x+y=-2}} \right. \left \{ {{x-y=\sqrt{3} } \atop {x+y=4\sqrt{3} }} \right. \left \{ {{x-y=-\sqrt{3} } \atop {x+y=-4\sqrt{3} }} \right. \left \{ {{x-y=6} \atop {x+y=2}} \right. \left \{ {{x-y=-6} \atop {x+y=-2}} \right. \left \{ {{x-y=\sqrt{3} } \atop {x+y=4\sqrt{3} }} \right. \left \{ {{x-y=-\sqrt{3} } \atop {x+y=-4\sqrt{3} }} \right.](https://tex.z-dn.net/?f=%5Cleft%20%5C%7B%20%7B%7Bx-y%3D6%7D%20%5Catop%20%7Bx%2By%3D2%7D%7D%20%5Cright.%20%5Cleft%20%5C%7B%20%7B%7Bx-y%3D-6%7D%20%5Catop%20%7Bx%2By%3D-2%7D%7D%20%5Cright.%20%5Cleft%20%5C%7B%20%7B%7Bx-y%3D%5Csqrt%7B3%7D%20%7D%20%5Catop%20%7Bx%2By%3D4%5Csqrt%7B3%7D%20%7D%7D%20%5Cright.%20%5Cleft%20%5C%7B%20%7B%7Bx-y%3D-%5Csqrt%7B3%7D%20%7D%20%5Catop%20%7Bx%2By%3D-4%5Csqrt%7B3%7D%20%7D%7D%20%5Cright.)
ищем корни поочередно методом сложения:
1) ![x - y + x + y = 6 + 2,\\2x = 8\\x = 4;\\y = -2 x - y + x + y = 6 + 2,\\2x = 8\\x = 4;\\y = -2](https://tex.z-dn.net/?f=x%20-%20y%20%2B%20x%20%2B%20y%20%3D%206%20%2B%202%2C%5C%5C2x%20%3D%208%5C%5Cx%20%3D%204%3B%5C%5Cy%20%3D%20-2)
2) ![x-y+x+y = -6-2,\\2x=-8\\x=-4,\\y=2 x-y+x+y = -6-2,\\2x=-8\\x=-4,\\y=2](https://tex.z-dn.net/?f=x-y%2Bx%2By%20%3D%20-6-2%2C%5C%5C2x%3D-8%5C%5Cx%3D-4%2C%5C%5Cy%3D2)
3) ![x-y+x+y=\sqrt{3}+4\sqrt{3},\\ 2x=5\sqrt{3},\\ x=2,5\sqrt{3},\\ y=1,5\sqrt{3}; x-y+x+y=\sqrt{3}+4\sqrt{3},\\ 2x=5\sqrt{3},\\ x=2,5\sqrt{3},\\ y=1,5\sqrt{3};](https://tex.z-dn.net/?f=x-y%2Bx%2By%3D%5Csqrt%7B3%7D%2B4%5Csqrt%7B3%7D%2C%5C%5C%202x%3D5%5Csqrt%7B3%7D%2C%5C%5C%20x%3D2%2C5%5Csqrt%7B3%7D%2C%5C%5C%20y%3D1%2C5%5Csqrt%7B3%7D%3B)
4) ![x-y+x+y=-\sqrt{3}-4\sqrt{3},\\ 2x=-5\sqrt{3},\\ x=-2,5\sqrt{3};\\y=-1,5\sqrt{3}. x-y+x+y=-\sqrt{3}-4\sqrt{3},\\ 2x=-5\sqrt{3},\\ x=-2,5\sqrt{3};\\y=-1,5\sqrt{3}.](https://tex.z-dn.net/?f=x-y%2Bx%2By%3D-%5Csqrt%7B3%7D-4%5Csqrt%7B3%7D%2C%5C%5C%202x%3D-5%5Csqrt%7B3%7D%2C%5C%5C%20x%3D-2%2C5%5Csqrt%7B3%7D%3B%5C%5Cy%3D-1%2C5%5Csqrt%7B3%7D.)
Ответ: ![(4;-2);(-4;2);(2,5\sqrt{3};1,5\sqrt{3});(-2,5\sqrt{3};-1,5\sqrt{3}) (4;-2);(-4;2);(2,5\sqrt{3};1,5\sqrt{3});(-2,5\sqrt{3};-1,5\sqrt{3})](https://tex.z-dn.net/?f=%284%3B-2%29%3B%28-4%3B2%29%3B%282%2C5%5Csqrt%7B3%7D%3B1%2C5%5Csqrt%7B3%7D%29%3B%28-2%2C5%5Csqrt%7B3%7D%3B-1%2C5%5Csqrt%7B3%7D%29)
Может быть есть решение более короче) И правильнее))