5.
![y=\dfrac{x^2-4x+4}{x-2} y=\dfrac{x^2-4x+4}{x-2}](https://tex.z-dn.net/?f=y%3D%5Cdfrac%7Bx%5E2-4x%2B4%7D%7Bx-2%7D)
Отметим ООФ: ![x\neq 2 x\neq 2](https://tex.z-dn.net/?f=x%5Cneq%202)
Упростим функцию:
![y=\dfrac{x^2-4x+4}{x-2}=\dfrac{(x-2)^2}{x-2}=x-2 y=\dfrac{x^2-4x+4}{x-2}=\dfrac{(x-2)^2}{x-2}=x-2](https://tex.z-dn.net/?f=y%3D%5Cdfrac%7Bx%5E2-4x%2B4%7D%7Bx-2%7D%3D%5Cdfrac%7B%28x-2%29%5E2%7D%7Bx-2%7D%3Dx-2)
График функции
- прямая. Для построения достаточно двух точек:
![y(0)=0-2=-2\Rightarrow (0;-2)\\y(1)=1-2=-1\Rightarrow (1;-1) y(0)=0-2=-2\Rightarrow (0;-2)\\y(1)=1-2=-1\Rightarrow (1;-1)](https://tex.z-dn.net/?f=y%280%29%3D0-2%3D-2%5CRightarrow%20%280%3B-2%29%5C%5Cy%281%29%3D1-2%3D-1%5CRightarrow%20%281%3B-1%29)
После построения прямой необходимо учесть ООФ исходной функции и выколоть точку с абсциссой
. Итоговый график на картиночке.
6.
Рассмотрим известное соотношение:
![\dfrac{x-4y}{y}=2\\x-4y=2y\\x=6y \dfrac{x-4y}{y}=2\\x-4y=2y\\x=6y](https://tex.z-dn.net/?f=%5Cdfrac%7Bx-4y%7D%7By%7D%3D2%5C%5Cx-4y%3D2y%5C%5Cx%3D6y)
В искомое выражение подставим вместо х равное значение 6y:
![\dfrac{x^2-6y^2}{x^2-5xy}=\dfrac{(6y)^2-6y^2}{(6y)^2-5\cdot6y\cdot y}=\dfrac{36y^2-6y^2}{36y^2-30y^2}=\dfrac{30y^2}{6y^2}=5 \dfrac{x^2-6y^2}{x^2-5xy}=\dfrac{(6y)^2-6y^2}{(6y)^2-5\cdot6y\cdot y}=\dfrac{36y^2-6y^2}{36y^2-30y^2}=\dfrac{30y^2}{6y^2}=5](https://tex.z-dn.net/?f=%5Cdfrac%7Bx%5E2-6y%5E2%7D%7Bx%5E2-5xy%7D%3D%5Cdfrac%7B%286y%29%5E2-6y%5E2%7D%7B%286y%29%5E2-5%5Ccdot6y%5Ccdot%20y%7D%3D%5Cdfrac%7B36y%5E2-6y%5E2%7D%7B36y%5E2-30y%5E2%7D%3D%5Cdfrac%7B30y%5E2%7D%7B6y%5E2%7D%3D5)
7.а.
![\dfrac{7n+8}{n}=7+\dfrac{8}{n} \dfrac{7n+8}{n}=7+\dfrac{8}{n}](https://tex.z-dn.net/?f=%5Cdfrac%7B7n%2B8%7D%7Bn%7D%3D7%2B%5Cdfrac%7B8%7D%7Bn%7D)
Выражение будет целым, если n будет делителем числа 8:
![n\in\{\pm1;\pm2;\pm4;\pm8\} n\in\{\pm1;\pm2;\pm4;\pm8\}](https://tex.z-dn.net/?f=n%5Cin%5C%7B%5Cpm1%3B%5Cpm2%3B%5Cpm4%3B%5Cpm8%5C%7D)
Учитывая, что n - натуральное, получаем:
![n\in\{1;2;4;8\} n\in\{1;2;4;8\}](https://tex.z-dn.net/?f=n%5Cin%5C%7B1%3B2%3B4%3B8%5C%7D)
7.б.
![\dfrac{n+3}{n-4}=\dfrac{n-4+4+3}{n-4}=1+\dfrac{7}{n-4} \dfrac{n+3}{n-4}=\dfrac{n-4+4+3}{n-4}=1+\dfrac{7}{n-4}](https://tex.z-dn.net/?f=%5Cdfrac%7Bn%2B3%7D%7Bn-4%7D%3D%5Cdfrac%7Bn-4%2B4%2B3%7D%7Bn-4%7D%3D1%2B%5Cdfrac%7B7%7D%7Bn-4%7D)
Выражение будет целым, если (n-4) будет делителем числа 7:
![n-4\in\{-7;-1;1;7\}\\n\in\{-3;3;5;11\} n-4\in\{-7;-1;1;7\}\\n\in\{-3;3;5;11\}](https://tex.z-dn.net/?f=n-4%5Cin%5C%7B-7%3B-1%3B1%3B7%5C%7D%5C%5Cn%5Cin%5C%7B-3%3B3%3B5%3B11%5C%7D)
Выбирая натуральные n, получим:
![n\in\{3;5;11\} n\in\{3;5;11\}](https://tex.z-dn.net/?f=n%5Cin%5C%7B3%3B5%3B11%5C%7D)
8.
![\dfrac{1}{1-2x}+\dfrac{1}{1+2x}+\dfrac{2}{1+4x^2}+\dfrac{4}{1+16x^4}=\\\\=\dfrac{(1+2x)+(1-2x)}{(1-2x)(1+2x)}+\dfrac{2}{1+4x^2}+\dfrac{4}{1+16x^4}=\\\\=\dfrac{2}{1-4x^2}+\dfrac{2}{1+4x^2}+\dfrac{4}{1+16x^4}=\\\\=\dfrac{2(1+4x^2)+2(1-4x^2)}{(1-4x^2)(1+4x^2)}+\dfrac{4}{1+16x^4}=\\\\=\dfrac{4}{1-16x^4}+\dfrac{4}{1+16x^4}=\dfrac{4(1+16x^4)+4(1-16x^4)}{(1-16x^4)(1+16x^4)}=\dfrac{8}{1-256x^8} \dfrac{1}{1-2x}+\dfrac{1}{1+2x}+\dfrac{2}{1+4x^2}+\dfrac{4}{1+16x^4}=\\\\=\dfrac{(1+2x)+(1-2x)}{(1-2x)(1+2x)}+\dfrac{2}{1+4x^2}+\dfrac{4}{1+16x^4}=\\\\=\dfrac{2}{1-4x^2}+\dfrac{2}{1+4x^2}+\dfrac{4}{1+16x^4}=\\\\=\dfrac{2(1+4x^2)+2(1-4x^2)}{(1-4x^2)(1+4x^2)}+\dfrac{4}{1+16x^4}=\\\\=\dfrac{4}{1-16x^4}+\dfrac{4}{1+16x^4}=\dfrac{4(1+16x^4)+4(1-16x^4)}{(1-16x^4)(1+16x^4)}=\dfrac{8}{1-256x^8}](https://tex.z-dn.net/?f=%5Cdfrac%7B1%7D%7B1-2x%7D%2B%5Cdfrac%7B1%7D%7B1%2B2x%7D%2B%5Cdfrac%7B2%7D%7B1%2B4x%5E2%7D%2B%5Cdfrac%7B4%7D%7B1%2B16x%5E4%7D%3D%5C%5C%5C%5C%3D%5Cdfrac%7B%281%2B2x%29%2B%281-2x%29%7D%7B%281-2x%29%281%2B2x%29%7D%2B%5Cdfrac%7B2%7D%7B1%2B4x%5E2%7D%2B%5Cdfrac%7B4%7D%7B1%2B16x%5E4%7D%3D%5C%5C%5C%5C%3D%5Cdfrac%7B2%7D%7B1-4x%5E2%7D%2B%5Cdfrac%7B2%7D%7B1%2B4x%5E2%7D%2B%5Cdfrac%7B4%7D%7B1%2B16x%5E4%7D%3D%5C%5C%5C%5C%3D%5Cdfrac%7B2%281%2B4x%5E2%29%2B2%281-4x%5E2%29%7D%7B%281-4x%5E2%29%281%2B4x%5E2%29%7D%2B%5Cdfrac%7B4%7D%7B1%2B16x%5E4%7D%3D%5C%5C%5C%5C%3D%5Cdfrac%7B4%7D%7B1-16x%5E4%7D%2B%5Cdfrac%7B4%7D%7B1%2B16x%5E4%7D%3D%5Cdfrac%7B4%281%2B16x%5E4%29%2B4%281-16x%5E4%29%7D%7B%281-16x%5E4%29%281%2B16x%5E4%29%7D%3D%5Cdfrac%7B8%7D%7B1-256x%5E8%7D)