Найдите наименьшее решение уравнения Sinx=1\2 из промежутка [500*;760*]

0 голосов
73 просмотров

Найдите наименьшее решение уравнения Sinx=1\2 из промежутка [500*;760*]


Алгебра (12 баллов) | 73 просмотров
Дано ответов: 2
0 голосов
sinx= \frac{1}{2}
x=arcsin( \frac{1}{2})+2* \pi *k
x= \frac{ \pi }{6}+2* \pi k
\frac{ \pi }{6}=30 ^{0}
30+360=390
390+360=750
x = -arcsin (0.5) + (2k + 1) \pi
150
150+360=510
так как 510<750 то ответ 510<br>
(6.6k баллов)
0 голосов

Наименьшие положительные х равны 30 и 150 градусов, потому что значения х повторяются через каждые 360 градусов. Из данного промежутка х = 510*

(10.8k баллов)
0

нет такого варианта 510, 505, 509,760,500.