Дано: ABCD- параллелограмм BM и AN- биссектрисы Доказать: ABNM-параллелограмм

0 голосов
266 просмотров

Дано: ABCD- параллелограмм BM и AN- биссектрисы Доказать: ABNM-параллелограмм


Геометрия (318 баллов) | 266 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

  ВС|║АD,  АВ - секущая. ⇒  сумма внутренних односторонних углов  равна 180°.  Биссектрисы делят углы пополам.⇒   из суммы углов треугольника угол ВОА=180°- 0,5•(∠АВС+∠ BAD)=90°,

 Биссектриса угла параллелограмма отсекает от него равнобедренный треугольник ( для доказательства рассмотри накрестлежащие углы при секущих ВN и АМ) ⇒ ВМ=АВ, АN=AB ⇒ ВМ=АN. В ∆ ВМN  отрезок ВО=ОN (т.к.в ∆ АВМ АО - медиана),⇒ МО - медиана и высота ( угол ВОМ =90° как смежный углу ВОА) ⇒ треугольник ВМN – равнобедренный и МN =ВМ   Противоположные стороны четырехугольника АВMN  равны и параллельны ( лежат на параллельных прямых), следовательно, АВMN– параллелограмм по определению. Кроме того,  этот четырехугольник  - ромб, т.к. все его стороны равны, а диагонали взаимно перпендикуляры и являются биссектрисами его углов. .


image
(228k баллов)