** доске в ряд поставлены 2018 точек. Миша и Лёша по очереди стирают одну или две...

0 голосов
100 просмотров

На доске в ряд поставлены 2018 точек. Миша и Лёша по очереди стирают одну или две соседних точки (Миша ходит первым). Выигрывает тот, кто стирает последнюю точку. Лёша утверждает, что он придумал для себя беспроигрышную стратегию. Прав ли Лёша? Помогите пожалуйста!!!!!


Математика (68 баллов) | 100 просмотров
Дан 1 ответ
0 голосов

Докажем, что стратегия есть у Миши. Сотрём первым ходом две средние точки (1009 и 1010), а после этого будем симметрично отвечать на ходы Лёши. Так как после каждого хода Миши ряд будет симметричен, а после хода Лёши - нет, то победит Миша, так как конечная ситуация симметрична.

Ответ: не прав.

(7.3k баллов)