1. Имеются две партии холодильников. Наудачу выбирается один холо-дильник. Событие А — случайно выбранный холодильник из первой партии. Событие В — холодильник из второй партии. События А и В совместные или несовместные? Что означают события А + В, А · В ? 2. Найти вероятность того, что среди четырех выбранных наугад цифр все одинаковые. 3. Имеются два круга, ограниченные концентрическими окружностями. Радиус большей окружности 10см, меньшей — 5см. Производится выстрел. Какова вероятность попадания в малый круг, если попада-ние в большой круг обязательно? 4. Пусть вероятность того, что стрелок при стрельбе по мишени выбьет 10 очков, равна 0,15; 9 очков — 0,2; 8 очков — 0,3; 7 очков или ме-нее равна 0,35. Найти вероятность того, что стрелок выбьет более 8 очков. 5. Из колоды в 36 карт наугад вынимают 2 карты. Найти вероятность того, что среди них окажется хотя бы один валет. 6. В ящике находится 30 деталей, из них 25 первого сорта, остальные — второго сорта. Вынимаются последовательно наудачу три детали. Ка-кова вероятность того, что две первые детали окажутся первого сор-та, а третья — второго сорта? 7. Четыре стрелка стреляют по мишени. Вероятность попадания в цель для первого стрелка равна 0,45; для второго — 0,5; для третьего — 0,6; ля четвертого — 0,7. Найти вероятность того, что в результате однократного выстрела всех четырех стрелков по мишени в ней бу-дет хотя бы одна пробоина. 8. В первой коробке 20 деталей, из них 16 стандартных, во второй — 15 деталей, из них 12 стандартных. Из второй коробки наудачу взята деталь и переложена в первую. Найти вероятность вынуть стандарт-ную деталь из первой коробки. 9. Прибор может работать в двух режимах: нормальном и ненормаль-ном. Нормальный режим наблюдается в 80% всех случаев работы прибора, ненормальный — в 20%. Вероятность выхода прибора из строя за время t в нормальном режиме равна 0,1; ненормальном — 0,7. Прибор вышел из строя за время t. Какова вероятность, что он работал в нормальном режиме?