task/29967685 a) решить уравнение cosx +√3sin(3π/2+x/2) +1 =0 . б) Найдите корни этого уравнения,принадлежащего отрезку [ - 4π; - 5π/2].
решение a) cosx +√3sin(3π/2+x/2) +1 =0 .⇔ cosx - √3cos(x/2) + 1 =0⇔2cos²(x/2) - √3cos(x/2) =0 ⇔2cos(x/2)*(cos(x/2) - (√3) /2 ) =0 .⇔
[ cos(x/2) =0 ; cos(x/2) =(√3) /2.⇔ [ x/2 =π/2+πn , x/2 =±π/6+2πn , n∈ ℤ. ⇔ [ x =π/2+πn , x =±π/3+4πn , n∈ ℤ.
ответ : π+2πn ; ±π/3 + 4πn ,n ∈ ℤ.
б) [ x = π+2πn ; x = ±π/3 + 4πn ,n ∈ ℤ.
x₁ = π+2πn ; x₂ = π/3 +4πn , x₃ = - π/3 + 4πn , n ∈ ℤ. /проще отбором /
x₁' = -3π ,при n= -2 ; x₂' = - 11π/3,при n= -1 ; x₃ ∉ [ - 4π; - 5π/2] ;
ответ : -3π ; - 11π/3 .