Радиус окружности равен 14/2=7. Опустим перпендикуряр из центра окружности на хорду, который и будет требуемым расстоянием. Пусть A - точка пересечения хорды и диаметра, O - центр окружности, OH - перпендикуляр.
В прямоугольном треугольнике AOH гипотенуза AO равна 7-3=4, а один из острых углов равен 30 градусам. Катет, лежащий против этого угла, является искомым расстоянием. Он равен половине гипотенузы, то есть 2.