1 Область определения: х≠0, т е х∈(-∞; 0)∪(0; + ∞)
2 Область значений: у≠0, т е у∈(-∞; 0)∪(0; + ∞)
3 График гипербола, при х>0 расположена в I и III координатных четвертях; при х<0 во II и IV четвертях</p>
4 нулей функции нет, нет и точек пересечения с осью абсцисс
5 Свойства:
при k>0
1) y>0 при x>0;
y
2) Функция убывает на промежутках (−∞;0) и (0;+∞);
3) Функция не ограничена ни снизу, ни сверху.
4) Ни наименьшего, ни наибольшего значений у функции нет.
5) Функция непрерывна на промежутках (−∞;0) и (0;+∞) и претерпевает разрыв при x=0
при k<0</p>
1) y>0 при x<0; y<0 при x>0.
2) Функция возрастает на промежутках (−∞;0) и (0;+∞);
3) Функция не ограничена ни снизу, ни сверху.
4) Ни наименьшего, ни наибольшего значений у функции нет.
5) Функция непрерывна на промежутках (−∞;0) и (0;+∞) и претерпевает разрыв при x=0.