6-3x\end{matrix}\right." alt="\left\{\begin{matrix}-x^{2}+3x+12\geq4x+10\\x^{2}+9x+41>6-3x\end{matrix}\right." align="absmiddle" class="latex-formula">
Решим каждое неравенство по отдельности, а затем просто найдем пересечение.
Первое:
![-x^{2}+3x+12\geq4x+10\\-x^{2}+3x+12-4x-10\geq0\\-x^{2}-x+2\geq0\\-x^{2}+x-2x+2\geq0\\-x(x-1)-2(x-1)\geq0\\-(x-1)(x+2)\geq0\\\begin{bmatrix}\left\{\begin{matrix}-(x-1)\geq0\\ x+2\geq0\end{matrix}\right.\\\left\{\begin{matrix}-x(x-1)\leq0\\x+2\leq0\end{matrix}\right.\end{matrix}\\\\\begin{bmatrix}\left\{\begin{matrix}x\leq1\\x\geq-2\end{matrix}\right.\\\left\{\begin{matrix}x\geq1\\ x\leq-2\end{matrix}\right.\end{matrix} -x^{2}+3x+12\geq4x+10\\-x^{2}+3x+12-4x-10\geq0\\-x^{2}-x+2\geq0\\-x^{2}+x-2x+2\geq0\\-x(x-1)-2(x-1)\geq0\\-(x-1)(x+2)\geq0\\\begin{bmatrix}\left\{\begin{matrix}-(x-1)\geq0\\ x+2\geq0\end{matrix}\right.\\\left\{\begin{matrix}-x(x-1)\leq0\\x+2\leq0\end{matrix}\right.\end{matrix}\\\\\begin{bmatrix}\left\{\begin{matrix}x\leq1\\x\geq-2\end{matrix}\right.\\\left\{\begin{matrix}x\geq1\\ x\leq-2\end{matrix}\right.\end{matrix}](https://tex.z-dn.net/?f=-x%5E%7B2%7D%2B3x%2B12%5Cgeq4x%2B10%5C%5C-x%5E%7B2%7D%2B3x%2B12-4x-10%5Cgeq0%5C%5C-x%5E%7B2%7D-x%2B2%5Cgeq0%5C%5C-x%5E%7B2%7D%2Bx-2x%2B2%5Cgeq0%5C%5C-x%28x-1%29-2%28x-1%29%5Cgeq0%5C%5C-%28x-1%29%28x%2B2%29%5Cgeq0%5C%5C%5Cbegin%7Bbmatrix%7D%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D-%28x-1%29%5Cgeq0%5C%5C%20x%2B2%5Cgeq0%5Cend%7Bmatrix%7D%5Cright.%5C%5C%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D-x%28x-1%29%5Cleq0%5C%5Cx%2B2%5Cleq0%5Cend%7Bmatrix%7D%5Cright.%5Cend%7Bmatrix%7D%5C%5C%5C%5C%5Cbegin%7Bbmatrix%7D%5Cleft%5C%7B%5Cbegin%7Bmatrix%7Dx%5Cleq1%5C%5Cx%5Cgeq-2%5Cend%7Bmatrix%7D%5Cright.%5C%5C%5Cleft%5C%7B%5Cbegin%7Bmatrix%7Dx%5Cgeq1%5C%5C%20x%5Cleq-2%5Cend%7Bmatrix%7D%5Cright.%5Cend%7Bmatrix%7D)
![\begin{bmatrix}x\in[-2;1]\\ x\in\O\end{matrix}\\x\in[-2;1] \begin{bmatrix}x\in[-2;1]\\ x\in\O\end{matrix}\\x\in[-2;1]](https://tex.z-dn.net/?f=%5Cbegin%7Bbmatrix%7Dx%5Cin%5B-2%3B1%5D%5C%5C%20x%5Cin%5CO%5Cend%7Bmatrix%7D%5C%5Cx%5Cin%5B-2%3B1%5D)
Второе:
6-3x\\x^{2}+9x+41-6+3x>0\\x^{2}+12x+35>0\\x^{2}+7x+5x+35>0\\x(x+7)+5(x+7)>0\\(x+7)(x+5)>0\\\begin{bmatrix}\left\{\begin{matrix}x+7>0\\x+5>0\end{matrix}\right.\\\left\{\begin{matrix}x+7<0\\x+5<0\end{matrix}\right.\end{matrix}\\\\\begin{bmatrix}\left\{\begin{matrix}x>-7\\x>-5\end{matrix}\right.\\\left\{\begin{matrix}x<-7\\x<-5\end{matrix}\right.\end{matrix}\\\\\begin{bmatrix}x\in(-5;\infty)\\x\in(-\infty;-7)\end{matrix}\\x\in(-\infty;-7)\cup(-5;+\infty)" alt="x^{2}+9x+41>6-3x\\x^{2}+9x+41-6+3x>0\\x^{2}+12x+35>0\\x^{2}+7x+5x+35>0\\x(x+7)+5(x+7)>0\\(x+7)(x+5)>0\\\begin{bmatrix}\left\{\begin{matrix}x+7>0\\x+5>0\end{matrix}\right.\\\left\{\begin{matrix}x+7<0\\x+5<0\end{matrix}\right.\end{matrix}\\\\\begin{bmatrix}\left\{\begin{matrix}x>-7\\x>-5\end{matrix}\right.\\\left\{\begin{matrix}x<-7\\x<-5\end{matrix}\right.\end{matrix}\\\\\begin{bmatrix}x\in(-5;\infty)\\x\in(-\infty;-7)\end{matrix}\\x\in(-\infty;-7)\cup(-5;+\infty)" align="absmiddle" class="latex-formula">
Теперь найдем пересечение этих решений:
6-3x\end{matrix}\right.\\\\\left\{\begin{matrix}x\in[-2;1]\\x\in(-\infty;-7)\cup(-5;+\infty)\end{matrix}\right.\\x\in[-2;1]" alt="\left\{\begin{matrix}-x^{2}+3x+12\geq4x+10\\x^{2}+9x+41>6-3x\end{matrix}\right.\\\\\left\{\begin{matrix}x\in[-2;1]\\x\in(-\infty;-7)\cup(-5;+\infty)\end{matrix}\right.\\x\in[-2;1]" align="absmiddle" class="latex-formula">